6.231 DYNAMIC PROGRAMMING

LECTURE 8

LECTURE OUTLINE

• Suboptimal control
• Cost approximation methods: Classification
• Certainty equivalent control: An example
• Limited lookahead policies
• Performance bounds
• Problem approximation approach
• Parametric cost-to-go approximation
PRACTICAL DIFFICULTIES OF DP

• The curse of dimensionality
 – Exponential growth of the computational and storage requirements as the number of state variables and control variables increases
 – Quick explosion of the number of states in combinatorial problems
 – Intractability of imperfect state information problems

• The curse of modeling
 – Mathematical models
 – Computer/simulation models

• There may be real-time solution constraints
 – A family of problems may be addressed. The data of the problem to be solved is given with little advance notice
 – The problem data may change as the system is controlled – need for on-line replanning
COST-TO-GO FUNCTION APPROXIMATION

• Use a policy computed from the DP equation where the optimal cost-to-go function J_{k+1} is replaced by an approximation \tilde{J}_{k+1}. (Sometimes $E\{g_k\}$ is also replaced by an approximation.)

• Apply $\overline{\mu}_k(x_k)$, which attains the minimum in

$$\min_{u_k \in U_k(x_k)} E\left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right\}$$

• There are several ways to compute \tilde{J}_{k+1}:
 - Off-line approximation: The entire function \tilde{J}_{k+1} is computed for every k, before the control process begins.
 - On-line approximation: Only the values $\tilde{J}_{k+1}(x_{k+1})$ at the relevant next states x_{k+1} are computed and used to compute u_k just after the current state x_k becomes known.
 - Simulation-based methods: These are off-line and on-line methods that share the common characteristic that they are based on Monte-Carlo simulation. Some of these methods are suitable for very large problems.
CERTAINTY EQUIVALENT CONTROL (CEC)

- Idea: Replace the stochastic problem with a deterministic problem
- At each time k, the future uncertain quantities are fixed at some “typical” values
- On-line implementation for a perfect state info problem. At each time k:
 1. Fix the w_i, $i \geq k$, at some \overline{w}_i. Solve the deterministic problem:

$$\text{minimize } g_N(x_N) + \sum_{i=k}^{N-1} g_i(x_i, u_i, \overline{w}_i)$$

where x_k is known, and

$$u_i \in U_i, \quad x_{i+1} = f_i(x_i, u_i, \overline{w}_i).$$

2. Use the first control in the optimal control sequence found.

- Equivalently, we apply $\bar{\mu}_k(x_k)$ that minimizes

$$g_k(x_k, u_k, \overline{w}_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, \overline{w}_k))$$

where \tilde{J}_{k+1} is the optimal cost of the corresponding deterministic problem.
EQUIVALENT OFF-LINE IMPLEMENTATION

- Let \(\{\mu_0^d(x_0), \ldots, \mu_{N-1}^d(x_{N-1})\} \) be an optimal controller obtained from the DP algorithm for the deterministic problem

\[
\begin{align*}
\text{minimize} & \quad g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), \overline{w}_k) \\
\text{subject to} & \quad x_{k+1} = f_k(x_k, \mu_k(x_k), \overline{w}_k), \quad \mu_k(x_k) \in U_k
\end{align*}
\]

- The CEC applies at time \(k \) the control input \(\mu_k^d(x_k) \).
- In an imperfect info version, \(x_k \) is replaced by an estimate \(\overline{x}_k(I_k) \).
PARTIALLY STOCHASTIC CEC

• Instead of fixing all future disturbances to their typical values, fix only some, and treat the rest as stochastic.

• Important special case: Treat an imperfect state information problem as one of perfect state information, using an estimate $\bar{x}_k(I_k)$ of x_k as if it were exact.

• Multiaccess communication example: Consider controlling the slotted Aloha system (Example 5.1.1 in the text) by optimally choosing the probability of transmission of waiting packets. This is a hard problem of imperfect state info, whose perfect state info version is easy.

• Natural partially stochastic CEC:

$$\tilde{\mu}_k(I_k) = \min \left[1, \frac{1}{\bar{x}_k(I_k)} \right],$$

where $\bar{x}_k(I_k)$ is an estimate of the current packet backlog based on the entire past channel history of successes, idles, and collisions (which is I_k).
GENERAL COST-TO-GO APPROXIMATION

- **One-step lookahead (1SL) policy:** At each \(k \) and state \(x_k \), use the control \(\tilde{\mu}_k(x_k) \) that

\[
\min_{u_k \in U_k(x_k)} E \left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right\},
\]

where

- \(\tilde{J}_N = g_N \).
- \(\tilde{J}_{k+1} \): approximation to true cost-to-go \(J_{k+1} \)

- **Two-step lookahead policy:** At each \(k \) and \(x_k \), use the control \(\tilde{\mu}_k(x_k) \) attaining the minimum above, where the function \(\tilde{J}_{k+1} \) is obtained using a 1SL approximation (solve a 2-step DP problem).

- If \(\tilde{J}_{k+1} \) is readily available and the minimization above is not too hard, the 1SL policy is implementable on-line.

- Sometimes one also replaces \(U_k(x_k) \) above with a subset of “most promising controls” \(\overline{U}_k(x_k) \).

- As the length of lookahead increases, the required computation quickly explodes.
PERFORMANCE BOUNDS FOR 1SL

- Let $\overline{J}_k(x_k)$ be the cost-to-go from (x_k, k) of the 1SL policy, based on functions \tilde{J}_k.
- Assume that for all (x_k, k), we have

$$
\hat{J}_k(x_k) \leq \tilde{J}_k(x_k),
$$

(*)

where $\hat{J}_N = g_N$ and for all k,

$$
\hat{J}_k(x_k) = \min_{u_k \in U_k(x_k)} E \left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1} \left(f_k(x_k, u_k, w_k) \right) \right\},
$$

[so $\hat{J}_k(x_k)$ is computed along with $\overline{\mu}_k(x_k)$]. Then

$$
\overline{J}_k(x_k) \leq \hat{J}_k(x_k), \quad \text{for all} \ (x_k, k).
$$

- Important application: When \tilde{J}_k is the cost-to-go of some heuristic policy (then the 1SL policy is called the rollout policy).

- The bound can be extended to the case where there is a δ_k in the RHS of (*). Then

$$
\overline{J}_k(x_k) \leq \tilde{J}_k(x_k) + \delta_k + \cdots + \delta_{N-1}
$$
COMPUTATIONAL ASPECTS

• Sometimes nonlinear programming can be used to calculate the 1SL or the multistep version [particularly when \(U_k(x_k) \) is not a discrete set]. Connection with stochastic programming (2-stage DP) methods (see text).

• The choice of the approximating functions \(\tilde{J}_k \) is critical, and is calculated in a variety of ways.

• Some approaches:

 (a) **Problem Approximation**: Approximate the optimal cost-to-go with some cost derived from a related but simpler problem

 (b) **Parametric Cost-to-Go Approximation**: Approximate the optimal cost-to-go with a function of a suitable parametric form, whose parameters are tuned by some heuristic or systematic scheme (Neuro-Dynamic Programming)

 (c) **Rollout Approach**: Approximate the optimal cost-to-go with the cost of some suboptimal policy, which is calculated either analytically or by simulation
PROBLEM APPROXIMATION

- Many (problem-dependent) possibilities
 - Replace uncertain quantities by nominal values, or simplify the calculation of expected values by limited simulation
 - Simplify difficult constraints or dynamics

- **Enforced decomposition example:** Route m vehicles that move over a graph. Each node has a “value.” First vehicle that passes through the node collects its value. Want to max the total collected value, subject to initial and final time constraints (plus time windows and other constraints).

- Usually the 1-vehicle version of the problem is much simpler. This motivates an approximation obtained by solving single vehicle problems.

- **1SL scheme:** At time k and state x_k (position of vehicles and “collected value nodes”), consider all possible kth moves by the vehicles, and at the resulting states we approximate the optimal value-to-go with the value collected by optimizing the vehicle routes one-at-a-time
PARAMETRIC COST-TO-GO APPROXIMATION

• Use a cost-to-go approximation from a parametric class $\tilde{J}(x, r)$ where x is the current state and $r = (r_1, \ldots, r_m)$ is a vector of “tunable” scalars (weights).

• By adjusting the weights, one can change the “shape” of the approximation \tilde{J} so that it is reasonably close to the true optimal cost-to-go function.

• Two key issues:
 – The choice of parametric class $\tilde{J}(x, r)$ (the approximation architecture).
 – Method for tuning the weights (“training” the architecture).

• Successful application strongly depends on how these issues are handled, and on insight about the problem.

• Sometimes a simulation-based algorithm is used, particularly when there is no mathematical model of the system.

• We will look in detail at these issues after a few lectures.
APPROXIMATION ARCHITECTURES

- Divided in **linear and nonlinear** [i.e., linear or nonlinear dependence of \(\tilde{J}(x,r) \) on \(r \)]
- Linear architectures are easier to train, but nonlinear ones (e.g., neural networks) are richer
- **Linear feature-based architecture:** \(\phi = (\phi_1, \ldots, \phi_m) \)

\[
\tilde{J}(x,r) = \phi(x)'r = \sum_{j=1}^{m} \phi_j(x)r_j
\]

- Ideally, the features will encode much of the nonlinearity that is inherent in the cost-to-go approximated, and the approximation may be quite accurate without a complicated architecture
- Anything sensible can be used as features. Sometimes the state space is partitioned, and “local” features are introduced for each subset of the partition (they are 0 outside the subset)
AN EXAMPLE - COMPUTER CHESS

- Chess programs use a feature-based position evaluator that assigns a score to each move/position.

- Many context-dependent special features.
- Most often the weighting of features is linear but multistep lookahead is involved.
- Most often the training is done “manually,” by trial and error.
ANOTHER EXAMPLE - AGGREGATION

- Main elements (in a finite-state context):
 - Introduce “aggregate” states S_1, \ldots, S_m, viewed as the states of an “aggregate” system
 - Define transition probabilities and costs of the aggregate system, by relating original system states with aggregate states (using so-called “aggregation and disaggregation probabilities”)
 - Solve (exactly or approximately) the “aggregate” problem by any kind of method (including simulation-based) ... more on this later.
 - Use the optimal cost of the aggregate problem to approximate the optimal cost of each original problem state as a linear combination of the optimal aggregate state costs

- This is a linear feature-based architecture (the optimal aggregate state costs are the features)

- **Hard aggregation example:** Aggregate states S_j are a partition of original system states (each original state belongs to one and only one S_j).
AN EXAMPLE: REPRESENTATIVE SUBSETS

- The aggregate states S_j are disjoint “representative” subsets of original system states

![Diagram of Original State Space and Aggregate States/Subsets]

- Common case: Each S_j is a group of states with “similar characteristics”

- Compute a “cost” r_j for each aggregate state S_j (using some method)

- Approximate the optimal cost of each original system state x with $\sum_{j=1}^{m} \phi_{xj} r_j$

- For each x, the ϕ_{xj}, $j = 1, \ldots, m$, are the “aggregation probabilities” ... roughly the degrees of membership of state x in the aggregate states S_j

- Each ϕ_{xj} is prespecified and can be viewed as the jth feature of state x
6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.