Particle Systems
and ODE Solvers II,
Mass-Spring Modeling

With slides from Jaakko Lehtinen
and others
ODEs and Numerical Integration

\[\frac{dX(t)}{dt} = f(X(t), t) \]

- Given a function \(f(X, t) \) compute \(X(t) \)
- Typically, \textit{initial value problems}:
 - Given values \(X(t_0) = X_0 \)
 - Find values \(X(t) \) for \(t > t_0 \)

- We can use lots of standard tools
Reduction to 1st Order

• Point mass: 2nd order ODE

\[\vec{F} = m \vec{a} \quad \text{or} \quad \vec{F} = m \frac{d^2 \vec{x}}{dt^2} \]

• Corresponds to system of first order ODEs

\[
\begin{aligned}
\frac{d}{dt} \vec{x} &= \vec{v} \\
\frac{d}{dt} \vec{v} &= \vec{F} / m
\end{aligned}
\]

2 unknowns (x, v) instead of just x
ODE: Path Through a Vector Field

- $X(t)$: path in multidimensional phase space

\[
\frac{d}{dt} X = f(X, t)
\]

“When we are at state X at time t, where will X be after an infinitely small time interval dt?”

- $f=\frac{d}{dt} X$ is a vector that sits at each point in phase space, pointing the direction.
Euler, Visually

\[
\frac{d}{dt} X = f(X, t)
\]

Image by MIT OpenCourseWare.
Euler’s Method: Inaccurate

- Moves along tangent; can leave solution curve, e.g.:
 \[f(X, t) = \begin{pmatrix} -y \\ x \end{pmatrix} \]

- Exact solution is circle:
 \[X(t) = \begin{pmatrix} r \cos(t+k) \\ r \sin(t+k) \end{pmatrix} \]

- Euler spirals outward no matter how small \(h \) is
 - will just diverge more slowly
Euler’s Method: Inaccurate

- Moves along tangent; can leave solution curve, e.g.:
 \[f(X, t) = \begin{pmatrix} -y \\ x \end{pmatrix} \]

- Exact solution is circle:
 \[X(t) = \begin{pmatrix} r \cos(t+k) \\ r \sin(t+k) \end{pmatrix} \]

- Euler spirals outward
 no matter how small \(h \) is
 - will just diverge more slowly

Questions?
Euler’s Method: Not Always Stable

- “Test equation” \(f(x, t) = -kx \)
Euler’s Method: Not Always Stable

• “Test equation” \(f(x, t) = -kx \)

• Exact solution is a decaying exponential:
 \[x(t) = x_0 e^{-kt} \]
Euler’s Method: Not Always Stable

• “Test equation” \(f(x, t) = -kx \)

• Exact solution is a decaying exponential:
 \[
 x(t) = x_0 e^{-kt}
 \]

• Let’s apply Euler’s method:
 \[
 x_{t+h} = x_t + hf(x_t, t)
 = x_t - hkx_t
 = (1 - hk)x_t
 \]
Euler’s Method: Not Always Stable

• Limited step size!
 – When $0 \leq (1 - hk) < 1 \Leftrightarrow h < 1/k$
 things are fine, the solution decays
 – When $-1 \leq (1 - hk) \leq 0 \Leftrightarrow 1/k \leq h \leq 2/k$
 we get oscillation
 – When $(1 - hk) < -1 \Leftrightarrow h > 2/k$
 things explode
Euler’s Method: Not Always Stable

If k is big, h must be small!

- Limited step size!
 - When $0 \leq (1 - hk) < 1 \Leftrightarrow h < 1/k$
 things are fine, the solution decays
 - When $-1 \leq (1 - hk) \leq 0 \Leftrightarrow 1/k \leq h \leq 2/k$
 we get oscillation
 - When $(1 - hk) < -1 \Leftrightarrow h > 2/k$
 things explode
Analysis: Taylor Series

- Expand exact solution $X(t)$

$$X(t_0 + h) = X(t_0) + h \left(\frac{d}{dt} X(t) \right)|_{t_0} + \frac{h^2}{2!} \left(\frac{d^2}{dt^2} X(t) \right)|_{t_0} + \frac{h^3}{3!} (\cdots) + \cdots$$

- Euler’s method approximates:

$$X(t_0 + h) = X_0 + hf(X_0, t_0) \quad \cdots + O(h^2) \text{error}$$

$$h \to h/2 \Rightarrow \text{error} \to \text{error}/4 \text{ per step} \times \text{ twice as many steps} \Rightarrow \text{error}/2$$

- First-order method: Accuracy varies with h

- To get 100x better accuracy need 100x more steps
Analysis: Taylor Series

- Expand exact solution $X(t)$

\[
X(t_0 + h) = X(t_0) + h \left(\frac{d}{dt} X(t) \right)_{t=t_0} + \frac{h^2}{2!} \left(\frac{d^2}{dt^2} X(t) \right)_{t=t_0} + \frac{h^3}{3!} \left(\cdots \right) + \cdots
\]

- Euler’s method approximates:

\[
X(t_0 + h) = X_0 + hf(X_0, t_0) \quad \ldots + O(h^2)\text{ error}
\]

\[
h \to h/2 \Rightarrow \text{error} \to \text{error}/4\text{ per step} \times \text{twice as many steps} \Rightarrow \text{error}/2
\]

- First-order method: Accuracy varies with h

- To get 100x better accuracy need 100x more steps
Can We Do Better?

- Problem: f varies along our Euler step
- Idea 1: look at f at the arrival of the step and compensate for variation

Image by MIT OpenCourseWare.
2nd Order Methods

• This translates to...

\[f_0 = f(X_0, t_0) \]
\[f_1 = f(X_0 + hf_0, t_0 + h) \]

• and we get

\[X(t_0 + h) = X_0 + \frac{h}{2}(f_0 + f_1) + O(h^3) \]

• This is the trapezoid method
 – Analysis omitted (see 6.839)

• Note: What we mean by “2nd order” is that the error goes down with \(h^2 \), not \(h \) – the equation is still 1st order!
Can We Do Better?

• Problem: f has varied along our Euler step
• Idea 2: look at f after a smaller step, use that value for a full step from initial position

Image by MIT OpenCourseWare.
2nd Order Methods Cont’d

• This translates to...

\[
\begin{align*}
f_0 &= f(X_0, t_0) \\
f_m &= f(X_0 + \frac{h}{2} f_0, t_0 + \frac{h}{2})
\end{align*}
\]

• and we get

\[
X(t_0 + h) = X_0 + h f_m + O(h^3)
\]

• This is the *midpoint method*
 - Analysis omitted again,
 but it’s not very complicated, see here.
Comparison

- **Midpoint:**
 - \(\frac{1}{2} \) Euler step
 - evaluate \(f_m \)
 - full step using \(f_m \)

- **Trapezoid:**
 - Euler step (a)
 - evaluate \(f_1 \)
 - full step using \(f_1 \) (b)
 - average (a) and (b)

- Not exactly same result, but same order of accuracy
Can We Do Even Better?

• You bet!
• You will implement Runge-Kutta for assignment 3

• Again, see Witkin, Baraff, Kass: Physically-based Modeling Course Notes, SIGGRAPH 2001

• See eg http://www.youtube.com/watch?v=HbE3L5CIIdQg
Can We Do Even Better? Questions?

• You bet!
• You will implement Runge-Kutta for assignment 3

• Again, see Witkin, Baraff, Kass: Physically-based Modeling Course Notes, SIGGRAPH 2001

• See eg http://www.youtube.com/watch?v=HbE3L5CIIdQg
Beyond pointlike objects: strings, cloth, hair, etc.

Interaction between particles
 – Create a network of spring forces that link pairs of particles

First, slightly hacky version of cloth simulation

Then, some motivation/intuition for implicit integration (NEXT LECTURE)
How Would You Simulate a String?

- Each particle is linked to two particles (except ends)
- Come up with forces that try to keep the distance between particles constant
Springs

Image courtesy of Jean-Jacques MILAN on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Spring Force – Hooke’s Law

Rest length L_0

$F = L_0 - ||P_j - P_i||$

P_i P_j
Spring Force – **Hooke’s Law**

- Force in the direction of the spring and proportional to difference with rest length L_0.

$$F(P_i, P_j) = K(L_0 - \|P_iP_j\|) \frac{P_iP_j}{\|P_iP_j\|}$$

- K is the stiffness of the spring
 - When K gets bigger, the spring *really* wants to keep its rest length

![Diagram of a spring with force F]
Spring Force – *Hooke’s Law*

- Force in the direction of the spring and proportional to difference with rest length L_0.

$$ F(P_i, P_j) = K(L_0 - ||P_i\vec{P}_j||) \frac{P_i\vec{P}_j}{||P_i\vec{P}_j||} $$

- K is the stiffness of the spring
 - When K gets bigger, the spring *really* wants to keep its rest length

This is the force on P_j. Remember Newton: P_i experiences force of equal magnitude but opposite direction.
How Would You Simulate a String?

- Springs link the particles
- Springs try to keep their rest lengths and preserve the length of the string
- Not exactly preserved though, and we get oscillation
 - Rubber band approximation
How Would You Simulate a String?

- Springs link the particles
- Springs try to keep their rest lengths and preserve the length of the string
- Not exactly preserved though, and we get oscillation
 - Rubber band approximation

Questions?
Hair

- Linear set of particles
- Length-preserving **structural** springs like before
- **Deformation** forces proportional to the angle between segments
- **External** forces
Hair - Alternative Structural Forces

- Springs between mass n & $n+2$ with rest length $2L_0$
 - Wants to keep particles aligned
Hair - Alternative Structural Forces

- Springs between mass n & n+2 with rest length $2L_0$
 - Wants to keep particles aligned

Questions?
Mass-Spring Cloth

Michael Kass

© ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
 Cloth – Three Types of Forces

• **Structural** forces
 – Try to enforce invariant properties of the system
 • E.g. force the distance between two particles to be constant
 – Ideally, these should be *constraints*, not forces

• **Internal deformation** forces
 – E.g. a string deforms, a spring board tries to remain flat

• **External** forces
 – Gravity, etc.
Springs for Cloth

• Network of masses and springs

• **Structural** springs:
 – link (i, j) and (i+1, j);
 and (i, j) and (i, j+1)

• **Deformation:**
 – Shear springs
 • (i, j) and (i+1, j+1)
 – Flexion springs
 • (i, j) and (i+2, j);
 (i, j) and (i, j+2)

• See Provot’s Graphics Interface ’95 paper for details

Image by MIT OpenCourseWare.
External Forces

- Gravity G
- Friction
- Wind, etc.
Cloth Simulation

• Then, the all trick is to set the stiffness of all springs to get realistic motion!

• Remember that forces depend on other particles (coupled system)

• But it is sparse (only near neighbors)
 – This is in contrast to e.g. the N-body problem.
Forces: Structural vs. Deformation

- Structural forces are here just to enforce a constraint
- Ideally, the constraint would be enforced strictly – at least a lot more than we can afford
- We’ll see that this is the root of a lot of problems
- In contrast, deformation forces actually correspond to physical forces
Contact Forces

• Hanging curtain:
 – 2 contact points stay fixed
• What does it mean?
 – Sum of the forces is zero
• How so?
 – Because those points undergo an external force that balances the system
• What is the force at the contact?
 – Depends on all other forces in the system
 – Gravity, wind, etc.
Contact Forces

• How can we compute the external contact force?
 – Inverse dynamics!
 – Sum all other forces applied to point
 – Take negative

• Do we really need to compute this force?
 – Not really, just ignore the other forces applied to this point!
Contact Forces

• How can we compute the external contact force?
 – Inverse dynamics!
 – Sum all other forces applied to point
 – Take negative

• Do we really need to compute this force?
 – Not really, just ignore the other forces applied to this point!

Questions?
Example

- Excessive rubbery deformation: the strings are not stiff enough
One Solution

• Constrain length to increase by less than 10%
 – A little hacky

Simple mass-spring system

Improved solution
(see Provot Graphics Interface 1995)
The Discretization Problem

- What happens if we discretize our cloth more finely?
- Do we get the same behavior?
- Usually not! It takes a lot of effort to design a scheme that is mostly oblivious to the discretization.
The Discretization Problem

• What happens if we discretize our cloth more finely?
• Do we get the same behavior?
• Usually not! It takes a lot of effort to design a scheme that is mostly oblivious to the discretization.
The Stiffness Issue

• We use springs while we really mean constraint
 – Spring should be super stiff, which requires tiny Δt
 – Remember $x'=-kx$ system and Euler speed limit!
 • The story extends to N particles and springs (unfortunately)

• Many numerical solutions
 – Reduce Δt (well, not a great solution)
 – Actually use constraints (see 6.839)
 – Implicit integration scheme (more next Thursday)
Euler Has a Speed Limit!

- $h > 1/k$: oscillate. $h > 2/k$: explode!

Image removed due to copyright restrictions -- please see slide 5 on "Implicit Methods" from Online Siggraph '97 Course notes, available at http://www.cs.cmu.edu/~baraff/sigcourse/.
Why Stiff Springs Are Difficult

- 1D example, with two particles constrained to move along the x axis only, rest length $L_0 = 1$
- Phase space is 4D: (x_1, v_1, x_2, v_2)
 - But spring force only depends on x_1, x_2 and L_0.

![Diagram showing two particles connected by a spring with $L_0 = 1$.](attachment:image.png)
Why Stiff Springs Are Difficult

height = magnitude of spring force

$K = 1$
Why Stiff Springs Are Difficult

Forces grow really big!

K=6

height=magnitude of spring force
Why Stiff Springs Are Difficult

Forces grow really big!

The “admissible region” shrinks towards the line $x_1-x_2=1$ as K grows.
Why Stiff Springs Are Difficult

The "admissible region" shrinks towards the line $x_1 - x_2 = 1$ as K grows.

Forces grow really big!
In our mass-spring cloth, we have “encouraged” length preservation using springs that want to have a given length (unfortunately, they can refuse offer ;-))

Constrained dynamic simulation: force it to be constant!

How it works – more in 6.839
- Start with constraint equation
 - E.g., \((x_2-x_1)-1 = 0\) in the previous 1D example
- Derive extra forces that will exactly enforce constraint
 - This means projecting the external forces (like gravity) onto the “subspace” of phase space where constraints are satisfied
 - Fancy name for this: “Lagrange multipliers”
- Again, see the SIGGRAPH 2001 Course Notes
Questions?

• Further reading
 – Stiff systems
 – Explicit vs. implicit solvers
 – Again, consult the 2001 course notes!
Mass on a Spring, Phase Space

- State of system (phase): velocity & position
 - similar to our $X=(x \ v)$ to get 1st order

This image is in the public domain. Source: [Wikimedia Commons](https://commons.wikimedia.org).
Mass on a Spring, Phase Space

• Guess how well Euler will do...
 always diverge

This image is in the public domain. Source: [Wikimedia Commons](https://commons.wikimedia.org/wiki/).
Difference with $x' = -kx$

- $x' = -kx$ is a true 1st order ODE
- Energy gets dissipated

- In contrast, a spring is a second order system
- Energy does not get dissipated
 - It is just transferred between potential and kinetic energy
 - Unless you add damping

- This is why people always add damping forces and results look too viscous
Difference with $x'=-kx$

- $x'=-kx$ is a true 1st order ODE
- Energy gets dissipated

- In contrast, a spring is a second order system
- Energy does not get dissipated
 - It is just transferred between potential and kinetic energy
 - Unless you add damping

- This is why people always add damping forces and results look too viscous
The Collision Problem

- A cloth has many points of contact
- Requires
 - Efficient collision detection
 - Efficient numerical treatment (stability)
Collisions

- Cloth has many points of contact
- Need efficient collision detection and stable treatment

Robert Bridson, Ronald Fedkiw & John Anderson
Robust Treatment of Collisions, Contact and Friction for Cloth Animation
SIGGRAPH 2002
Cool Cloth/Hair Demos

Cool Cloth/Hair Demos

Image removed due to copyright restrictions.

Cool Cloth/Hair Demos

Questions?

Image removed due to copyright restrictions.
Implementation Notes

• It pays off to abstract (as usual)
 – It’s easy to design your “Particle System” and “Time Stepper” to be unaware of each other

• Basic idea
 – “Particle system” and “Time Stepper” communicate via floating-point vectors \mathbf{X} and a function that computes $f(\mathbf{X}, t)$
 • “Time Stepper” does not need to know anything else!
Implementation Notes

• Basic idea
 – “Particle System” tells “Time Stepper” how many dimensions (N) the phase space has
 – “Particle System” has a function to write its state to an N-vector of floating point numbers (and read state from it)
 – “Particle System” has a function that evaluates $f(\mathbf{X},t)$, given a state vector \mathbf{X} and time t
 – “Time Stepper” takes a “Particle System” as input and advances its state
class ParticleSystem
{
 virtual int getDimension()
 virtual setDimension(int n)
 virtual float* getStatePositions()
 virtual setStatePositions(float* positions)
 virtual float* getStateVelocities()
 virtual setStateVelocities(float* velocities)
 virtual float* getForces(float* positions, float* velocities)
 virtual setMasses(float* masses)
 virtual float* getMasses()

 float* m_currentState
};
class TimeStepper
{
 virtual takeStep(ParticleSystem* ps, float h)
}

Time Stepper Class
class ForwardEuler : TimeStepper
{
 void takeStep(ParticleSystem* ps, float h)
 {
 velocities = ps->getStateVelocities()
 positions = ps->getStatePositions()
 forces = ps->getForces(positions, velocities)
 masses = ps->getMasses()
 accelerations = forces / masses
 newPositions = positions + h*velocities
 newVelocities = velocities + h*accelerations
 ps->setStatePositions(newPositions)
 ps->setStateVelocities(newVelocities)
 }
}
class MidPoint : TimeStepper
{
 void takeStep(ParticleSystem* ps, float h)
 {
 velocities = ps->getStateVelocities()
 positions = ps->getStatePositions()
 forces = ps->getForces(positions, velocities)
 masses = ps->getMasses()
 accelerations = forces / masses
 midPositions = positions + 0.5*h*velocities
 midVelocities = velocities + 0.5*h*accelerations
 midForces = ps->getForces(midPositions, midVelocities)
 midAccelerations = midForces / masses
 newPositions = positions + 0.5*h*midVelocities
 newVelocities = velocities + 0.5*h*midAccelerations
 ps->setStatePositions(newPositions)
 ps->setStateVelocities(newVelocities)
 }
}
Particle System Simulation

```java
ps = new MassSpringSystem(particleCount, masses, springs, externalForces)
stepper = new ForwardEuler()
time = 0
while time < 1000
    stepper->takeStep(ps, 0.0001)
    time = time + 0.0001
// render
```
Particle System Simulation

```java
ps = new MassSpringSystem(particleCount, masses, springs, externalForces)
stepper = new MidPoint()
time = 0
while time < 1000
    stepper->takeStep(ps, 0.0001)
time = time + 0.0001
// render
```
Questions?

Image removed due to copyright restrictions.
That's All for Today!

Image removed due to copyright restrictions.