Acceleration Structures for Ray Casting

Hašan et al. 2007

MIT EECS 6.837 Computer Graphics
Wojciech Matusik, MIT EECS
Recap: Ray Tracing

trace ray
Intersect all objects
color = ambient term
For every light
 cast shadow ray
 color += local shading term
If mirror
 color += color_{refl} *
 trace reflected ray
If transparent
 color += color_{trans} *
 trace transmitted ray

• Does it ever end?

Stopping criteria:
• Recursion depth
 – Stop after a number of bounces
• Ray contribution
 – Stop if reflected / transmitted contribution becomes too small
Recursion For Reflection: None
Recursion For Reflection: 1
Recursion For Reflection: 2
Ray tree

- Visualizing the ray tree for single image pixel
Ray tree

• Visualizing the ray tree for single image pixel

This gets pretty complicated pretty fast!
Questions?
Ray Tracing Algorithm Analysis

- Lots of primitives
- Recursive
- Distributed Ray Tracing
 - Means using many rays for non-ideal/non-pointlike phenomena
 - Soft shadows
 - Anti-aliasing
 - Glossy reflection
 - Motion blur
 - Depth of field

\[
\text{cost} \approx \text{height} \times \text{width} \times \text{num primitives} \times \text{intersection cost} \times \text{size of recursive ray tree} \times \text{num shadow rays} \times \text{num supersamples} \times \text{num glossy rays} \times \text{num temporal samples} \times \text{num aperture samples} \times \ldots
\]

Can we reduce this?
Today

• Motivation
 – You need LOTS of rays to generate nice pictures
 – Intersecting every ray with every primitive becomes the bottleneck

• Bounding volumes

• Bounding Volume Hierarchies, Kd-trees

For every pixel
 Construct a ray from the eye
 For every object in the scene
 Find intersection with the ray
 Keep if closest
 Shade
Accelerating Ray Casting

- Goal: Reduce the number of ray/primitive intersections
Conservative Bounding Volume

- First check for an intersection with a conservative bounding volume
- Early reject: If ray doesn’t hit volume, it doesn’t hit the triangles!
Conservative Bounding Volume

• What does “conservative” mean?
 – Volume must be big enough to contain all geometry within
Conservative Bounding Regions

- **Desiderata**
 - Tight → avoid false positives
 - Fast to intersect
Ray-Box Intersection

- Axis-aligned box
- Box: \((X_1, Y_1, Z_1) \rightarrow (X_2, Y_2, Z_2)\)
- Ray: \(P(t) = R_o + tR_d\)
Naïve Ray-Box Intersection

- 6 plane equations: Compute all intersections
- Return closest intersection inside the box
 - Verify intersections are on the correct side of each plane: $A x + B y + C z + D < 0$
Reducing Total Computation

- Pairs of planes have the same normal
- Normals have only one non-zero component
- Do computations one dimension at a time
Test if Parallel

• If $R_{dx} = 0$ (ray is parallel) AND $R_{ox} < X_1$ or $R_{ox} > X_2 \rightarrow$ no intersection

(The same for Y and Z, of course)
Find Intersections Per Dimension

- Basic idea
 - Determine an interval along the ray for each dimension
 - The intersect these 1D intervals (remember CSG!)
 - Done!
Find Intersections Per Dimension

• Basic idea
 – Determine an interval along the ray for each dimension
 – The intersect these 1D intervals (remember CSG!)
 – Done!

Interval between X_1 and X_2
Find Intersections Per Dimension

• Basic idea
 – Determine an interval along the ray for each dimension
 – The intersect these 1D intervals (remember CSG!)
 – Done!

Interval between \(X_1 \) and \(X_2 \)
Interval between \(Y_1 \) and \(Y_2 \)
Find Intersections Per Dimension

- Basic idea
 - Determine an interval along the ray for each dimension
 - The intersect these 1D intervals (remember CSG!)
 - Done!
Intersecting 1D Intervals
Intersecting 1D Intervals

Start = max of mins
Intersecting 1D Intervals

Start = max of mins

End = min of maxs
Intersecting 1D Intervals

If Start > End, the intersection is empty!

Start = max of mins

End = min of maxs
Find Intersections Per Dimension

- Calculate intersection distance t_1 and t_2
Find Intersections Per Dimension

• Calculate intersection distance t_1 and t_2

 - $t_1 = \frac{(X_1 - R_{ox})}{R_{dx}}$
 - $t_2 = \frac{(X_2 - R_{ox})}{R_{dx}}$

 - $[t_1, t_2]$ is the X interval
Then Intersect Intervals

- **Init** t_{start} & t_{end} with X interval
- **Update** t_{start} & t_{end} for each subsequent dimension

\[y = Y_2 \quad \text{and} \quad x = X_1 \]
\[y = Y_1 \quad \text{and} \quad x = X_2 \]
Then Intersect Intervals

- Compute t_1 and t_2 for Y...
Then Intersect Intervals

- Update t_{start} & t_{end} for each subsequent dimension
 - If $t_1 > t_{\text{start}}$, $t_{\text{start}} = t_1$
 - If $t_2 < t_{\text{end}}$, $t_{\text{end}} = t_2$
Then Intersect Intervals

- Update t_{start} & t_{end} for each subsequent dimension
 - If $t_1 > t_{\text{start}}$, $t_{\text{start}} = t_1$
 - If $t_2 < t_{\text{end}}$, $t_{\text{end}} = t_2$
Then Intersect Intervals

- Update t_{start} & t_{end} for each subsequent dimension
 - If $t_1 > t_{start}$, $t_{start} = t_1$
 - If $t_2 < t_{end}$, $t_{end} = t_2$
Is there an Intersection?

- If $t_{\text{start}} > t_{\text{end}} \rightarrow \text{box is missed}$
If $t_{\text{end}} < t_{\text{min}}$ → box is behind

\[y = Y_1 \quad \begin{array}{c} \hline \text{t}_{\text{start}} \end{array} \quad \begin{array}{c} \hline \text{t}_{\text{end}} \end{array} \quad y = Y_2 \]

\[x = X_1 \quad \begin{array}{c} \hline \text{Box} \end{array} \quad x = X_2 \]
Return the Correct Intersection

- If $t_{\text{start}} > t_{\text{min}}$ → closest intersection at t_{start}
- Else → closest intersection at t_{end}
 - Eye is inside box
Ray-Box Intersection Summary

- For each dimension,
 - If $R_{dx} = 0$ (ray is parallel) AND $R_{ox} < X_1$ or $R_{ox} > X_2$ → no intersection
- For each dimension, calculate intersection distances t_1 and t_2
 - $t_1 = (X_1 - R_{ox}) / R_{dx}$
 - $t_2 = (X_2 - R_{ox}) / R_{dx}$
 - If $t_1 > t_2$, swap
 - Maintain an interval $[t_{\text{start}}, t_{\text{end}}]$, intersect with current dimension
 - If $t_1 > t_{\text{start}}$, $t_{\text{start}} = t_1$
 - If $t_2 < t_{\text{end}}$, $t_{\text{end}} = t_2$
- If $t_{\text{start}} > t_{\text{end}}$ → box is missed
- If $t_{\text{end}} < t_{\text{min}}$ → box is behind
- If $t_{\text{start}} > t_{\text{min}}$ → closest intersection at t_{start}
- Else → closest intersection at t_{end}
Efficiency Issues

- $1/R_{dx}$, $1/R_{dy}$ and $1/R_{dz}$ can be pre-computed and shared for many boxes
Bounding Box of a Triangle

\[
(x_{\text{min}}, y_{\text{min}}, z_{\text{min}}) = (\min(x_0, x_1, x_2), \\
\min(y_0, y_1, y_2), \\
\min(z_0, z_1, z_2))
\]

\[
(x_{\text{max}}, y_{\text{max}}, z_{\text{max}}) = (\max(x_0, x_1, x_2), \\
\max(y_0, y_1, y_2), \\
\max(z_0, z_1, z_2))
\]
Bounding Box of a Sphere

\[
(x_{\text{min}}, y_{\text{min}}, z_{\text{min}}) = (x-r, y-r, z-r)
\]

\[
(x_{\text{max}}, y_{\text{max}}, z_{\text{max}}) = (x+r, y+r, z+r)
\]
Bounding Box of a Plane

\[(x_{\text{max}}, y_{\text{max}}, z_{\text{max}}) = (+\infty, +\infty, +\infty) \]

\[n = (a, b, c) \]

\[ax + by + cz = d \]

\[(x_{\text{min}}, y_{\text{min}}, z_{\text{min}}) = (-\infty, -\infty, -\infty) \]

unless \(n \) is exactly perpendicular to an axis
Bounding Box of a Group

\[
(x_{\text{min}}, y_{\text{min}}, z_{\text{min}}) = (\min(x_{\text{min}_a}, x_{\text{min}_b}), \\
\min(y_{\text{min}_a}, y_{\text{min}_b}), \\
\min(z_{\text{min}_a}, z_{\text{min}_b}))
\]

\[
(x_{\text{max}}, y_{\text{max}}, z_{\text{max}}) = (\max(x_{\text{max}_a}, x_{\text{max}_b}), \\
\max(y_{\text{max}_a}, y_{\text{max}_b}), \\
\max(z_{\text{max}_a}, z_{\text{max}_b}))
\]
Bounding Box of a Transform

Bounding box of transformed object IS NOT
the transformation of the bounding box!

\[
\begin{align*}
(x'_{\text{max}}, y'_{\text{max}}, z'_{\text{max}}) &= \max(x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7), \\
&\quad \max(y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7), \\
&\quad \max(z_0, z_1, z_2, z_3, z_4, x_5, x_6, x_7)
\end{align*}
\]

\[
\begin{align*}
(x'_{\text{min}}, y'_{\text{min}}, z'_{\text{min}}) &= \min(x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7), \\
&\quad \min(y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7), \\
&\quad \min(z_0, z_1, z_2, z_3, z_4, x_5, x_6, x_7)
\end{align*}
\]
Bounding Box of a Transform

Bounding box of transformed object IS NOT the transformation of the bounding box!

Questions?
Are Bounding Volumes Enough?

- If ray hits bounding volume, must we test all primitives inside it?
 - Lots of work, think of a 1M-triangle mesh
Bounding Volume Hierarchies

- If ray hits bounding volume, must we test all primitives inside it?
 - Lots of work, think of a 1M-triangle mesh
- You guessed it already, we’ll split the primitives in groups and build recursive bounding volumes
 - Like collision detection, remember?
Bounding Volume Hierarchy (BVH)

- Find bounding box of objects/primitives
- Split objects/primitives into two, compute child BVs
- Recurse, build a binary tree
Bounding Volume Hierarchy (BVH)

- Find bounding box of objects/primitives
- Split objects/primitives into two, compute child BVs
- Recurse, build a binary tree
Bounding Volume Hierarchy (BVH)

- Find bounding box of objects/primitives
- Split objects/primitives into two, compute child BVs
- Recurse, build a binary tree
Bounding Volume Hierarchy (BVH)

- Find bounding box of objects/primitives
- Split objects/primitives into two, compute child BVs
- Recurse, build a binary tree
Bounding Volume Hierarchy (BVH)

- Find bounding box of objects/primitives
- Split objects/primitives into two, compute child BVs
- Recurse, build a binary tree
Where to Split Objects?

- At midpoint of current volume \(OR \)
- Sort, and put half of the objects on each side \(OR \)
- Use modeling hierarchy
Where to Split Objects?

- At midpoint of current volume \textit{OR}
- Sort, and put half of the objects on each side \textit{OR}
- Use modeling hierarchy

Questions?!
Ray-BVH Intersection
Ray-BVH Intersection
Ray-BVH Intersection
Intersection with BVH
Intersection with BVH
Intersection with BVH
BVH Discussion

• Advantages
 – easy to construct
 – easy to traverse
 – binary tree (=simple structure)

• Disadvantages
 – may be difficult to choose a good split for a node
 – poor split may result in minimal spatial pruning
BVH Discussion

• Advantages
 – easy to construct
 – easy to traverse
 – binary tree (=simple structure)

• Disadvantages
 – may be difficult to choose a good split for a node
 – poor split may result in minimal spatial pruning

• Still one of the best methods
 – Recommended for your first hierarchy!
BVH Discussion

• Advantages
 – easy to construct
 – easy to traverse
 – binary tree (=simple structure)

• Disadvantages
 – may be difficult to choose a good split for a node
 – poor split may result in minimal spatial pruning

• Still one of the best methods
 – Recommended for your first hierarchy!
Kd-trees

- Probably most popular acceleration structure
- Binary tree, axis-aligned splits
 - Each node splits space in half along an axis-aligned plane
- A **space partition**: The nodes do not overlap!
 - This is in contrast to BVHs
Data Structure

KdTreeNode:

KdTreeNode* backNode, frontNode //children
int dimSplit // either x, y or z
float splitDistance
 // from origin along split axis
boolean isLeaf
List of triangles //only for leaves

here dimSplit = 0 (x axis)
Kd-tree Construction

- Start with scene axis-aligned bounding box
- Decide which dimension to split (e.g. longest)
- Decide at which distance to split (not so easy)
Kd-tree Construction - Split

- Distribute primitives to each side
- If a primitive overlaps split plane, assign to both sides
Kd-tree Construction - Recurse

- Stop when minimum number of primitives reached
- Other stopping criteria possible
Questions?

• Further reading on efficient Kd-tree construction
 – Hunt, Mark & Stoll, IRT 2006
 – Zhou et al., SIGGRAPH Asia 2008
Kd-tree Traversal - High Level

- If leaf, intersect with list of primitives
- If intersects back child, recurse
- If intersects front child, recurse
Kd-tree Traversal, Naïve Version

- Could use bounding box test for each child
- But redundant calculation: bbox similar to that of parent node, plus axis aligned, one single split
Kd-tree Traversal, Smarter Version

- Get main bbox intersection from parent
 - t_{near}, t_{far}
- Intersect with splitting plane
 - easy because axis aligned
Kd-tree Traversal - Three Cases

- Intersects only back, only front, or both
- Can be tested by examining t, t_{start} and t_{end}
Kd-tree traversal - three cases

- If $t > t_{\text{end}}$ => intersect only front
- If $t < t_{\text{start}}$ => intersect only back

Note: “Back” and “Front” depend on ray direction!
Kd-tree Traversal Pseudocode

travers(orig, dir, t_start, t_end):
 #adapted from Ingo Wald’s thesis
 #assumes that dir[self.dimSplit] > 0
 if self.isLeaf:
 return intersect(self.listOfTriangles, orig, dir, t_start, t_end)
 t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];
 if t <= t_start:
 # case one, t <= t_start <= t_end -> cull front side
 return self.backSideNode.traverse(orig, dir,t_start,t_end)
 elif t >= t_end:
 # case two, t_start <= t_end <= t -> cull back side
 return self.frontSideNode.traverse(orig, dir,t_start,t_end)
 else:
 # case three: traverse both sides in turn
 t_hit = self.frontSideNode.traverse(orig, dir, t_start, t)
 if t_hit <= t: return t_hit; # early ray termination
 return self.backSideNode.traverse(orig, dir, t, t_end)
travers(orig, dir, t_start, t_end):
 # adapted from Ingo Wald’s thesis
 # assumes that dir[self.dimSplit] > 0
 if self.isLeaf:
 return intersect(self.listOfTriangles, orig, dir, t_start, t_end)
 t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];
 if t <= t_start:
 # case one, t <= t_start <= t_end -> cull front side
 return self.backSideNode.traverse(orig, dir, t_start, t_end)
 elif t >= t_end:
 # case two, t_start <= t_end <= t -> cull back side
 return self.frontSideNode.traverse(orig, dir, t_start, t_end)
 else:
 # case three: traverse both sides in turn
 t_hit = self.frontSideNode.traverse(orig, dir, t_start, t)
 if t_hit <= t: return t_hit; # early ray termination
 return self.backSideNode.traverse(orig, dir, t, t_end)
travers(orig, dir, t_start, t_end):
 #adapted from Ingo Wald’s thesis
 #assumes that dir[self.dimSplit] >0
 if self.isLeaf:
 return intersect(self.listOfTriangles, orig, dir, t_start, t_end)
 t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];
 if t <= t_start:
 # case one, t <= t_start <= t_end -> cull front side
 return self.backSideNode.traverse(orig, dir, t_start, t_end)
 elif t >= t_end:
 # case two, t_start <= t_end <= t -> cull back side
 return self.frontSideNode.traverse(orig, dir, t_start, t_end)
 else:
 # case three: traverse both sides in turn
 t_hit = self.frontSideNode.traverse(orig, dir, t_start, t)
 if t_hit <= t: return t_hit; # early ray termination
 return self.backSideNode.traverse(orig, dir, t, t_end)
Early termination is powerful

- If there is an intersection in the first node, don’t visit the second one
- Allows ray casting to be reasonably independent of scene depth complexity
Recap: Two main gains

- Only intersect with triangles “near” the line
- Stop at the first intersection
Two main gains

travers (orig, dir, t_start, t_end):
 # adapted from Ingo Wald’s thesis
 # assumes that dir[self.dimSplit] > 0
 if self.isLeaf:
 return intersect (self.listOfTriangles, orig, dir, t_start, t_end)
 t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];
 if t <= t_start:
 # case one, t <= t_start <= t_end -> cull front side
 return self.backSideNode.traverse (orig, dir, t_start, t_end)
 elif t >= t_end:
 # case two, t_start <= t_end <= t -> cull back side
 return self.frontSideNode.traverse (orig, dir, t_start, t_end)
 else:
 # case three: traverse both sides in turn
 t_hit = self.frontSideNode.traverse (orig, dir, t_start, t);
 if t_hit <= t: return t_hit; # early ray termination
 return self.backSideNode.traverse (orig, dir, t, t_end)

Only near line
stop at first intersection
Important Details

• For leaves, do NOT report intersection if t is not in $[t_{\text{near}}, t_{\text{far}}]$.
 – Important for primitives that overlap multiple nodes!

• Need to take direction of ray into account
 – Reverse back and front if the direction has negative coordinate along the split dimension

• Degeneracies when ray direction is parallel to one axis
Important Details

• For leaves, do NOT report intersection if t is not in $[t_{\text{near}}, t_{\text{far}}]$.
 – Important for primitives that overlap multiple nodes!

• Need to take direction of ray into account
 – Reverse back and front if the direction has negative coordinate along the split dimension

• Degeneracies when ray direction is parallel to one axis
Where to split for construction?

- Example for baseline
- Note how this ray traverses easily: one leaf only
Split in the Middle

- Does not conform to empty vs. dense areas
- Inefficient traversal – Not so good!
Split in the Median

- Tries to balance tree, but does not conform to empty vs. dense areas
- Inefficient traversal – Not good
Optimizing Splitting Planes

• Most people use the Surface Area Heuristic (SAH)
 – MacDonald and Booth 1990, “Heuristic for ray tracing using space subdivision”, Visual Computer

• Idea: simple probabilistic prediction of traversal cost based on split distance

• Then try different possible splits and keep the one with lowest cost

• Further reading on efficient Kd-tree construction
 – Hunt, Mark & Stoll, IRT 2006
 – Zhou et al., SIGGRAPH Asia 2008
Surface Area Heuristic

• Probability that we need to intersect a child
 – Area of the bbox of that child
 (exact for uniformly distributed rays)

• Cost of the traversal of that child
 – number of primitives (simplistic heuristic)

• This heuristic likes to put big densities of primitives in small-area nodes
Is it Important to Optimize Splits?

• Given the same traversal code, the quality of Kd-tree construction can have a big impact on performance, e.g. a factor of 2 compared to naive middle split
 – But then, you should consider carefully if you need that extra performance
 – Could you optimize something else for bigger gain?
Efficient Implementation

- Not so easy, need ability to sort primitives along the three axes very efficiently and split them into two groups
- Plus primitives have an extent (bbox)
- Extra tricks include smarter tests to check if a triangle is inside a box
Hard-core efficiency considerations

- See e.g. Ingo Wald’s PhD thesis
 - http://www.sci.utah.edu/~wald/PhD/

- Calculation
 - Optimized barycentric ray-triangle intersection

- Memory
 - Make kd-tree node as small as possible
 (dirty bit packing, make it 8 bytes)

- Parallelism
 - SIMD extensions, trace 4 rays at a time, mask results where they disagree
Pros and Cons of Kd trees

- **Pros**
 - Simple code
 - Efficient traversal
 - Can conform to data

- **Cons**
 - Costly construction, not great if you work with moving objects
Questions?

- For extensions to moving scenes, see Real-Time KD-Tree Construction on Graphics Hardware, Zhou et al., SIGGRAPH 2008
Questions?