Image removed due to copyright restrictions.
Modern Graphics Pipeline

- Project vertices to 2D (image)
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility (Z-buffer), update frame buffer color
Modern Graphics Pipeline

- Project vertices to 2D (image)

- Rasterize triangle: find which pixels should be lit
 - For each pixel, test 3 edge equations
 - if all pass, draw pixel

- Compute per-pixel color
- Test visibility (Z-buffer), update frame buffer color
Modern Graphics Pipeline

- Perform projection of vertices
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility, update frame buffer color
 - Store minimum distance to camera for each pixel in “Z-buffer”
 - ~same as t_{min} in ray casting!
 - if $\text{new}_z < \text{zbuffer}[x, y]$
 \[
 \text{zbuffer}[x, y] = \text{new}_z
 \]
 \[
 \text{framebuffer}[x, y] = \text{new_color}
 \]
Modern Graphics Pipeline

For each triangle
transform into eye space
(perform projection)
setup 3 edge equations
for each pixel x,y
if passes all edge equations
compute z
if z<zbuffer[x,y]
 zbuffer[x,y]=z
 framebuffer[x,y]=shade()
Modern Graphics Pipeline

For each triangle
transform into eye space
(perform projection)
setup 3 edge equations
for each pixel x, y
if passes all edge equations
compute z
if z < zbuffer[x, y]
 zbuffer[x, y] = z
 framebuffer[x, y] = shade()

Questions?
Interpolation in Screen Space

• How do we get that Z value for each pixel?
 – We only know z at the vertices...
 – (Remember, screen-space z is actually z’/w’)
 – Must interpolate from vertices into triangle interior

For each triangle
 for each pixel (x,y)
 if passes all edge equations
 compute z
 if z<zbuffer[x,y]
 zbuffer[x,y]=z
 framebuffer[x,y]=shade()
Interpolation in Screen Space

- Also need to interpolate color, normals, texture coordinates, etc. between vertices
 - We did this with barycentrics in ray casting
 - Linear interpolation in object space
 - Is this the same as linear interpolation on the screen?
Interpolation in Screen Space

Two regions of same size in world space
Interpolation in Screen Space

The farther region shrinks to a smaller area of the screen.

Two regions of same size in world space.
Nope, Not the Same

- Linear variation in world space does not yield linear variation in screen space due to projection
 - Think of looking at a checkerboard at a steep angle; all squares are the same size on the plane, but not on screen

Head-on view linear screen-space ("Gouraud") interpolation Perspective-correct Interpolation

BAD

This image is in the public domain. Source: Wikipedia.
Back to the basics: Barycentrics

• Barycentric coordinates for a triangle \((a, b, c)\)

\[P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c \]

– Remember, \(\alpha + \beta + \gamma = 1, \quad \alpha, \beta, \gamma \geq 0\)

• Barycentrics are very general:
 – Work for \(x, y, z, u, v, r, g, b\)
 – Anything that varies linearly in object space
 – Including \(z\)
Basic strategy

• Given screen-space x', y'
• Compute barycentric coordinates
• Interpolate anything specified at the three vertices
Basic strategy

• How to make it work
 – start by computing x', y' given barycentrics
 – invert

• Later: shortcut barycentrics, directly build interpolants
From barycentric to screen-space

• Barycentric coordinates for a triangle \((a, b, c)\)

\[P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c \]

– Remember, \(\alpha + \beta + \gamma = 1, \quad \alpha, \beta, \gamma \geq 0 \)

• Let’s project point \(P\) by projection matrix \(C\)

\[CP = C(\alpha a + \beta b + \gamma c) \]

\[= \alpha Ca + \beta Cb + \gammaCc \]

\[= \alpha a' + \beta b' + \gamma c' \]

\(a', b', c'\) are the projected homogeneous vertices before division by \(w\)
Projection

• Let’s use simple formulation of projection going from 3D homogeneous coordinates to 2D homogeneous coordinates

\[C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \]

• No crazy near-far or storage of 1/z
• We use ‘ for screen space coordinates
From barycentric to screen-space

• From previous slides:

\[P' = CP = \alpha a' + \beta b' + \gamma c' \]

• Seems to suggest it’s linear in screen space. But it’s homogenous coordinates

\(a', b', c' \) are the projected homogeneous vertices
From barycentric to screen-space

• From previous slides:

\[P' = CP = \alpha a' + \beta b' + \gamma c' \]

• Seems to suggest it’s linear in screen space. But it’s homogenous coordinates

• After division by \(w \), the \((x,y)\) screen coordinates are

\[
\left(\frac{P'_x}{P'_w}, \frac{P'_y}{P'_w} \right) = \left(\frac{\alpha a'_x + \beta b'_x + \gamma c'_x}{\alpha a'_w + \beta b'_w + \gamma c'_w}, \frac{\alpha a'_y + \beta b'_y + \gamma c'_y}{\alpha a'_w + \beta b'_w + \gamma c'_w} \right)
\]
Recap: barycentric to screen-space

\[
\begin{pmatrix}
 x' \\
 y' \\
 1
\end{pmatrix}
\sim
\begin{pmatrix}
 P'_x \\
 P'_y \\
 P'_w
\end{pmatrix}
=\begin{pmatrix}
 a'_x & b'_x & c'_x \\
 a'_y & b'_y & c'_y \\
 a'_z & b'_z & c'_z
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
\]
From screen-space to barycentric

- It’s a projective mapping from the barycentrics onto screen coordinates!
 - Represented by a 3x3 matrix
- We’ll take the inverse mapping to get from \((x, y, 1)\) to the barycentrics!
From Screen to Barycentrics

- **Recipe**
 - Compute projected homogeneous coordinates a', b', c'
 - Put them in the columns of a matrix, invert it
 - Multiply screen coordinates $(x, y, 1)$ by inverse matrix
 - **Then divide by the sum of the resulting coordinates**
 - This ensures the result is sums to one like barycentrics should
 - Then interpolate value (e.g. Z) from vertices using them!
From Screen to Barycentrics

\[
\begin{pmatrix}
\alpha \\
\beta \\
\gamma
\end{pmatrix}
\sim
\begin{pmatrix}
a'_x & b'_x & c'_x \\
a'_y & b'_y & c'_y \\
a'_w & b'_w & c'_w
\end{pmatrix}^{-1}
\begin{pmatrix}
x \\
y \\
1
\end{pmatrix}
\]

• Notes:
 – matrix is inverted once per triangle
 – can be used to interpolate z, color, texture coordinates, etc.
For every triangle

ComputeProjection

Compute interpolation matrix

Compute bbox, clip bbox to screen limits

For all pixels x,y in bbox

Test edge functions

If all \(E_i > 0 \)

compute barycentrics

interpolate \(z \) from vertices

\.f \(z < zbuffer[x,y] \)

interpolate UV coordinates from vertices

look up texture color \(k_d \)

Framebuffer[\(x,y \)] = \(k_d \) //or more complex shader
Pseudocode – Rasterization

For every triangle
ComputeProjection

Compute interpolation matrix
Compute bbox, clip bbox to screen limits
For all pixels x,y in bbox
 Test edge functions
 If all $E_i > 0$
 compute barycentrics
 interpolate z from vertices
 if $z < \text{zbuffer}[x,y]$
 interpolate UV coordinates from vertices
 look up texture color k_d
 Framebuffer[x,y] = k_d //or more complex shader

Questions?
The infamous half pixel

- I refuse to teach it, but it’s an annoying issue you should know about
- Do a line drawing of a rectangle from [top, right] to [bottom, left]
- Do we actually draw the columns/rows of pixels?
The infamous half pixel

- Displace by half a pixel so that top, right, bottom, left are in the middle of pixels
- Just change the viewport transform
Questions?
Supersampling

- Trivial to do with rasterization as well
- Often rates of 2x to 8x
- Requires to compute per-pixel average at the end
- Most effective against edge jaggies
- Usually with jittered sampling
 - pre-computed pattern for a big block of pixels
1 Sample / Pixel
4 Samples / Pixel
16 Samples / Pixel
Even this sampling rate cannot get rid of all aliasing artifacts!

We are really only pushing the problem farther.
Related Idea: Multisampling

- Problem
 - Shading is very expensive today (complicated shaders)
 - Full supersampling has linear cost in \#samples (k*k)
- Goal: High-quality edge antialiasing at lower cost
- Solution
 - Compute shading only once per pixel for each primitive, but resolve visibility at “sub-pixel” level
 - Store (k*width, k*height) frame and z buffers, but share shading results between sub-pixels within a real pixel
 - When visibility samples within a pixel hit different primitives, we get an average of their colors
 - Edges get antialiased without large shading cost
Multisampling, Visually

〇 = sub-pixel visibility sample

One pixel
Multisampling, Visually

\[\bigcirc = \text{sub-pixel visibility sample} \]
Multisampling, Visually

\(\bigcirc \) = sub-pixel visibility sample

The color is only computed once per pixel per triangle and reused for all the visibility samples that are covered by the triangle.

One pixel
Supersampling, Visually

= sub-pixel visibility sample

When supersampling, we compute colors independently for all the visibility samples.
Multisampling Pseudocode

For each triangle
 For each pixel
 if pixel overlaps triangle
 color=shade() // only once per pixel!
 for each sub-pixel sample
 compute edge equations & z
 if subsample passes edge equations
 && z < zbuffer[subsample]
 zbuffer[subsample]=z
 framebuffer[subsample]=color
Multisampling Pseudocode

For each triangle
 For each pixel
 if pixel overlaps triangle
 color=shade() // only once per pixel!
 for each sub-pixel sample
 compute edge equations & z
 if subsample passes edge equations
 && z < zbuffer[subsample]
 zbuffer[subsample]=z
 framebuffer[subsample]=color

At display time: //this is called “resolving”
 For each pixel
 color = average of subsamples
Multisampling vs. Supersampling

• Supersampling
 – Compute an entire image at a higher resolution, then downsample (blur + resample at lower res)

• Multisampling
 – Supersample visibility, compute expensive shading only once per pixel, reuse shading across visibility samples

• But Why?
 – Visibility edges are where supersampling really works
 – Shading can be prefiltered more easily than visibility

• This is how GPUs perform antialiasing these days
Questions?
Examples of Texture Aliasing

Magnification

Minification
Texture Filtering

• Problem: Prefiltering is impossible when you can only take point samples
 – This is why visibility (edges) need supersampling

• Texture mapping is simpler
 – Imagine again we are looking at an infinite textured plane
Texture Filtering

- We should pre-filter image function before sampling
 - That means blurring the image function with a low-pass filter (convolution of image function and filter)
Texture Filtering

- We can combine low-pass and sampling
 - The value of a sample is the integral of the product of the image f and the filter h centered at the sample location
 - “A local average of the image f weighted by the filter h”

$$\hat{f}_i = \int f(x) h(x) \, dx$$
Texture Filtering

- Well, we can just as well change variables and compute this integral *on the textured plane instead*
 - In effect, we are projecting the pre-filter onto the plane
Texture Filtering

- Well, we can just as well change variables and compute this integral \textit{on the textured plane instead}:
 - In effect, we are projecting the pre-filter onto the plane.
 - It’s still a weighted average of the texture under filter:

\[
\hat{f}_i = \int_{\text{plane}} f(x') h(x') |J(x, x')| \, dx'
\]
Texture Pre-Filtering, Visually

- Must still integrate product of projected filter and texture – That doesn’t sound any easier...
Solution: Precomputation

• We’ll precompute and store a set of prefiltered results from each texture with different sizes of prefilters
Solution: Precomputation

- We’ll precompute and store a set of prefiltered results from each texture with different sizes of prefilters
Solution: Precomputation

• We’ll precompute and store a set of prefiltered results from each texture with different sizes of prefilters
 – Because it’s low-passed, we can also subsample
Solution: Precomputation

• We’ll precompute and store a set of prefiltered results from each texture with different sizes of prefilters
 – Because it’s low-passed, we can also subsample
This is Called “MIP-Mapping”

- Construct a pyramid of images that are pre-filtered and re-sampled at 1/2, 1/4, 1/8, etc., of the original image's sampling.
- During rasterization we compute the index of the decimated image that is sampled at a rate closest to the density of our desired sampling rate.
- MIP stands for *multum in parvo* which means *many in a small place*.
MIP-Mapping

• When a pixel wants an integral of the pre-filtered texture, we must find the “closest” results from the precomputed MIP-map pyramid
 – Must compute the “size” of the projected pre-filter in the texture UV domain

Projected pre-filter
MIP-Mapping

- Simplest method: Pick the scale closest, then do usual reconstruction on that level (e.g. bilinear between 4 closest texture pixels)
MIP-Mapping

- Simplest method: Pick the scale closest, then do usual reconstruction on that level (e.g. bilinear between 4 closest texture pixels)
- Problem: discontinuity when switching scale
Tri-Linear MIP-Mapping

- Use **two** closest scales, compute reconstruction results from both, and linearly interpolate between them.

Projected pre-filter

- Sharper pyramid level
- Blurrier pyramid level
- 2 closest-available filters in pyramid
Tri-Linear MIP-Mapping

- Use **two** closest scales, compute reconstruction results from both, and linearly interpolate between them.
- Problem: our filter might not be circular, because of foreshortening.
Anisotropic filtering

- Approximate Elliptical filter with multiple circular ones (usually 5)
- Perform trilinear lookup at each one
- i.e. consider five times eight values
 - fair amount of computation
 - this is why graphics hardware has dedicated units to compute trilinear mipmap reconstruction
MIP Mapping Example

Nearest Neighbor

MIP Mapped (Tri-Linear)
MIP Mapping Example

- nearest neighbor/point sampling
- mipmaps & linear interpolation (tri-linear)
Questions
Storing MIP Maps

- Can be stored compactly: Only 1/3 more space!

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Finding the MIP Level

- Often we think of the pre-filter as a box
 - What is the projection of the square pixel “window” in texture space?
Finding the MIP Level

- Often we think of the pre-filter as a box
 - What is the projection of the square pixel “window” in texture space?
 - Answer is in the partial derivatives p_x and p_y of (u,v) w.r.t. screen (x,y)

$$p_x = (du/dx, dv/dx)$$
$$p_y = (du/dy, dv/dy)$$
For isotropic trilinear mipmapping

- No right answer, circular approximation
- Two most common approaches are
 - Pick level according to the length (in texels) of the longer partial
 \[\log_2 \max \{w|p_x|, h|p_y|\} \]
 - Pick level according to the length of their sum
 \[\log_2 \sqrt{(w|p_x|)^2 + (h|p_y|)^2} \]

\[p_x = (du/dx, dv/dx) \]
\[p_y = (du/dy, dv/dy) \]
Anisotropic filtering

• Pick levels according to smallest partial
 – well, actually max of the smallest and the largest
• Distribute circular “probes” along longest one
• Weight them by a Gaussian

\[p_x = (\frac{du}{dx}, \frac{dv}{dx}) \]
\[p_y = (\frac{du}{dy}, \frac{dv}{dy}) \]
How Are Partials Computed?

• You can derive closed form formulas based on the \(uv \) and \(xyw \) coordinates of the vertices...
 – This is what used to be done

• ..but shaders may compute texture coordinates programmatically, not necessarily interpolated
 – No way of getting analytic derivatives!

• In practice, use finite differences
 – GPUs process pixels in blocks of (at least) 4 anyway
 • These 2x2 blocks are called *quads*
Image Quality Comparison

trilinear mipmapping (excessive blurring)

anisotropic filtering
Further Reading

- Paul Heckbert published seminal work on texture mapping and filtering in his master’s thesis (!)
 - Including EWA
 - Highly recommended reading!

- More reading
 - Feline: Fast Elliptical Lines for Anisotropic Texture Mapping, McCormack, Perry, Farkas, Jouppi SIGGRAPH 1999
Questions?

Image removed due to copyright restrictions.
<table>
<thead>
<tr>
<th>Ray Casting</th>
<th>Rendering Pipeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each pixel</td>
<td>For each triangle</td>
</tr>
<tr>
<td>For each object</td>
<td>For each pixel</td>
</tr>
<tr>
<td>• Ray-centric</td>
<td>• Triangle centric</td>
</tr>
<tr>
<td>• Needs to store scene in memory</td>
<td>• Needs to store image (and depth) into memory</td>
</tr>
<tr>
<td>• (Mostly) Random access to scene</td>
<td>• (Mostly) random access to frame buffer</td>
</tr>
</tbody>
</table>

Which is smaller? Scene or Frame?
Frame

Which is easiest to access randomly?
Frame because regular sampling
Ray Casting vs. Rendering Pipeline

Ray Casting

For each pixel
 For each object
 - Whole scene must be in memory
 - Needs spatial acceleration to be efficient
 + Depth complexity: no computation for hidden parts
 + Atomic computation
 + More general, more flexible
 - Primitives, lighting effects, adaptive antialiasing

Rendering Pipeline

For each triangle
 For each pixel
 - Harder to get global illumination
 - Needs smarter techniques to address depth complexity (overdraw)
 + Primitives processed one at a time
 + Coherence: geometric transforms for vertices only
 + Good bandwidth/computation ratio
 + Minimal state required, good memory behavior
http://xkcd.com/386/

Image removed due to copyright restrictions – please see the link above for further details.
Bad example

Image removed due to copyright restrictions -- please see https://blogs.intel.com/intellabs/2007/10/10/real_time_raytracing_the_end_o/ for further details.
Ray-triangle intersection

- Triangle ABC
- Ray $O + t \cdot D$
- Barycentric coordinates α, β, γ
- Ray-triangle intersection

$$P(t) = O + t \cdot D = A + \beta AB + \gamma AC$$

- or in matrix form

$$\begin{pmatrix} -AB & -AC & D \end{pmatrix} \begin{pmatrix} \beta \\ \gamma \\ t \end{pmatrix} = (OA)$$
Ray-triangle

\[
(-AB \quad - AC \quad D) \begin{pmatrix} \beta \\ \gamma \\ t \end{pmatrix} = (OA)
\]

- Cramer’s rule (where \(||\) is the determinant)

\[
\beta = \frac{|OA - AC D|}{|M|}
\]

\[
\gamma = \frac{|-AB OA D|}{|M|}
\]

\[
t = \frac{|-AB - AC OA|}{|M|}
\]
Determinant

- Cross product and dot product
- i.e., for a matrix with 3 columns vectors: $M=UVW$

$$|M| = U \times V \cdot W$$
Back to ray-triangle

\[
\begin{array}{c}
(\begin{array}{cccc}
-AB & -AC & D \\
M & & & \\
\end{array}) \\
\begin{array}{c}
\beta \\
\gamma \\
t \\
\end{array}
\end{array} = (OA)
\]

\[
\beta = \frac{|OA - AC \cdot D|}{|M|}
\]

\[
\gamma = \frac{|-AB \cdot OA \cdot D|}{|M|}
\]

\[
t = \frac{|-AB - AC \cdot OA|}{|M|}
\]

\[
\Delta_M = BA \times CA \cdot D
\]

\[
\Delta_\beta = OA \times CA \cdot D
\]

\[
\Delta_\gamma = BA \times OA \cdot D
\]

\[
\Delta_t = BA \times CA \cdot OA
\]
Ray-triangle recap

\[\Delta_M = BA \times CA \cdot D \]
\[\Delta_\beta = OA \times CA \cdot D \]
\[\Delta_\gamma = BA \times OA \cdot D \]
\[\Delta_t = BA \times CA \cdot OA \]

• And

\[\beta = \frac{\Delta_\beta}{\Delta_M} \]
\[\gamma = \frac{\Delta_\gamma}{\Delta_M} \]
\[t = \frac{\Delta_t}{\Delta_M} \]

• Intersection if

\[0 \leq \beta \leq 1 \quad 0 \leq \gamma \leq 1 \]
Rasterization

- Viewpoint is known and fixed
- Let’s extract what varies per pixel
 \[\Delta_M = BA \times CA \cdot D \]
 \[\Delta_\beta = OA \times CA \cdot D \]
 \[\Delta_\gamma = BA \times OA \cdot D \]
 \[\Delta_t = BA \times CA \cdot OA \]
- Only D!
Rasterization

\[\Delta_M = Eq_M \cdot D \]
\[t = \Delta_t / \Delta_M \]
\[\beta = Eq_\beta \cdot D / \Delta_M \]
\[\gamma = Eq_\gamma \cdot D / \Delta_M \]

- Cache redundant computation independent of D:

\[Eq_M = BA \times CA \]
\[Eq_\beta = OA \times CA \quad \text{Equivalent to the setup of edge equations and interpolants in rasterization} \]
\[Eq_\gamma = BA \times OA \]
\[\Delta_t = BA \times CA \cdot OA \]

- And for each pixel \(\Delta_M = BA \times CA \cdot D \) \(\Delta_\beta = OA \times CA \cdot D \) \(\Delta_\gamma = BA \times OA \cdot D \) \(\Delta_t = BA \times CA \cdot OA \)
Conclusions

- Rasterization and ray casting do the same thing
- Just swap the two loops
- And cache what is independent of pixel location
Ray casting (Python)

```python
def intersectWithBarycentric (self, triangle, orig, D):
    detM=triangle.BA.cross(triangle.CA)*D
    if fabs(detM)<epsilon: return False, 0
    OA=triangle.A-orig
    detBeta=OA.cross(triangle.CA)*D
    beta=detBeta/detM
    detGamma=triangle.BA.cross(OA)*D
    gamma=detGamma/detM
    detT=triangle.BA.cross(triangle.CA)*OA
    t=detT/detM
    if beta<-epsilon or gamma<-epsilon or beta+gamma>1+epsilon:
        return False, 0
    else: return True, t
```

\[
\Delta_M = BA \times CA \cdot D \\
\Delta_\beta = OA \times CA \cdot D \\
\Delta_\gamma = BA \times OA \cdot D \\
\Delta_t = BA \times CA \cdot OA \\
\beta = \Delta_\beta / \Delta_M \\
\gamma = \Delta_\gamma / \Delta_M \\
t = \Delta_t / \Delta_M
\]
def intersectWithBarycentric(self, triangle, orig, D):
 detM=triangle.BA.cross(triangle.CA)*D
 if fabs(detM)<epsilon: return False, 0
 OA=triangle.A-orig
 detBeta=OA.cross(triangle.CA)*D
 beta=detBeta/detM
 detGamma=triangle.BA.cross(OA)*D
 gamma=detGamma/detM
 detT=triangle.BA.cross(triangle.CA)*OA
 t=detT/detM
 if beta<-epsilon or gamma<-epsilon or beta+gamma>1+epsilon:
 return False, 0
 else: return True, t
def intersectWithBarycentric (self, triangle, orig, D):
 detM=triangle.BA.cross(triangle.CA)*D
 if fabs(detM)<epsilon: return False, 0
 OA=triangle.A-orig
 detBeta=OA.cross(triangle.CA)*D
 beta=detBeta/detM
 detGamma=triangle.BA.cross(OA)*D
 gamma=detGamma/detM
 detT=triangle.BA.cross(triangle.CA)*OA
 t=detT/detM
 if beta<-epsilon or gamma<-epsilon or beta+gamma>1+epsilon:
 return False, 0
 else: return True, t

def setUpTriangle (self, triangle, orig):
 self.detMEq=triangle.BA.cross(triangle.CA)
 OA=triangle.A-orig
 self.detBetaEq=OA.cross(triangle.CA)
 self.detGammaEq=triangle.BA.cross(OA)
 self.detTeq=triangle.BA.cross(triangle.CA)*OA

def testPixel(self, D):
 detM=self.detMEq*D
 if fabs(detM)<epsilon: return False, 0
 detBeta= self.detBetaEq*D
 beta=detBeta/detM
 detGamma=self.detGammaEq*D
 gamma=detGamma/detM
 t=self.detTeq/detM
 if beta<-epsilon or gamma<-epsilon or beta+gamma>1+epsilon:
 return False, 0
 else: return True, t
Main loops

```python
def raycast(scene, width, height):
    im = Image.new('RGB', (width, height))
    for y in range(height):
        for x in range(width):
            dir = vec3(2.0 * x / width - 1.0, 1.0 - 2.0 * y / height, 1.0)
            tmin = infinity
            for T in scene.triangles:
                test, t = inter.intersectWithBarycentric(triangle, orig, dir)
                if test and t > 0 and t < tmin:
                    im.putpixel((x, y), T.shade())
                    tmin = t
    return im

def rasterize(scene, width, height):
    im = Image.new('RGB', (width, height))
    tmin = [[infinity for col in range(width)] for row in range(height)]
    for T in scene.triangles:
        inter.setUpTriangle(T, orig)
        for y in range(height):
            for x in range(width):
                dir = vec3(2.0 * x / width - 1.0, 1.0 - 2.0 * y / height, 1.0)
                test, t = inter.testPixel(dir)
                if test and t > 0 and t < tmin[x][y]:
                    im.putpixel((x, y), T.shade())
                    tmin[x][y] = t
    return im
```

Ray generation
Ray intersection
t test

z buffer initialization
edge equation setup

convert pixel to direction D
per-pixel edge equation

z buffer update
Good References

- http://c0de517e.blogspot.com/2011/09/raytracing-myths.html
Graphics Hardware

• High performance through
 – Parallelism
 – Specialization
 – No data dependency
 – Efficient pre-fetching

• More next week
Questions?
Movies

both rasterization and ray tracing

Images removed due to copyright restrictions.
Images removed due to copyright restrictions.
Simulation

Images removed due to copyright restrictions.
Images removed due to copyright restrictions.
Architecture

ray-tracing, rasterization with preprocessing for complex lighting

Images removed due to copyright restrictions.
Virtual Reality

rasterization

Images removed due to copyright restrictions.
Visualization

mosty rasterization, interactive ray-tracing is starting

Images removed due to copyright restrictions.
Images removed due to copyright restrictions.
Questions?
More issues

• Transparency
 – Difficult, pretty much unsolved!

• Alternative
 – Reyes (Pixar’s Renderman)
 – deferred shading
 – pre-Z pass
 – tile-based rendering

• Shadows
 – Next time

• Reflections, global illumination
Transparency

- Triangles and pixels can have transparency (alpha)
- But the result depends on the order in which triangles are sent

- Big problem: visibility
 - There is only one depth stored per pixel/sample
 - Transparent objects involve multiple depth
 - Full solutions store a (variable-length) list of visible objects and depth at each pixel
 - See e.g. the A-buffer by Carpenter
 http://portal.acm.org/citation.cfm?id=808585
Deferred shading

- Avoid shading fragments that are eventually hidden
 - shading becomes more and more costly
- First pass: rasterize triangles, store information such as normals, BRDF per pixel
- Second pass: use stored information to compute shading

- Advantage: no useless shading
- Disadvantage: storage, antialiasing is difficult
Pre z pass

- Again, avoid shading hidden fragment
- First pass: rasterize triangles, update only z buffer, not color buffer
- Second pass: rasterize triangles again, but this time, do full shading

- Advantage over deferred shading: less storage, less code modification, more general shading is possible, multisampling possible
- Disadvantage: needs to rasterize twice
Tile-based rendering

- Problem: framebuffer is a lot of memory, especially with antialiasing
- Solution: render subsets of the screen at once
- For each tile of pixels
 - For each triangle
 - for each pixel
- Might need to handle a triangle in multiple tiles
 - redundant computation for projection and setup
- Used in mobile graphics cards
Reyes - Pixar’s Renderman

• Cook et al. http://graphics.pixar.com/library/Reyes/
• Based on micropolygons
 – each primitive gets diced into polygons as small as a pixel
• Enables antialiasing motion blur, depth of field
• Shading is computed at the micropolygon level, not pixel
 – related to multisampling: shaded value will be used for multiple visibility sample
Dicing and rasterization

Figure 4a. A sphere is split into patches, and one of the patches is diced into a 8x8 grid of micropolygons.

Figure 4b. The micropolygons in the grid are transformed to screen space, where they are stochastically sampled.
Reyes - Pixar’s Renderman

• Tile-based to save memory and maximize texture coherence
• Order-independent transparency
 – stores list of fragments and depth per pixel
• Micropolygons get rasterized in space, lens and time
 – frame buffer has multiple samples per pixel
 – each sample has lens coordinates and time value
Reyes - ignoring transparency

• For each tile of pixels
 – For each geometry
 • Dice into micropolygons adaptively
 • For each micropolygon
 – compute shaded value
 – For each sample in tile at coordinates x, y, u, v, t
 » reproject micropolygon to its position at time t, and lens position uv
 » determine if micropolygon overlaps samples
 » if yes, test visibility (z-buffer)
 » if z buffer passes, update framebuffer
REYES results

Figure 6. 1986 Pixar Christmas Card by John Lasseter and Eben Osby.

© ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Questions?