6.852: Distributed Algorithms
Fall, 2009

Class 5
Today’s plan

- Review EIG algorithm for Byzantine agreement.
- Number-of-processors lower bound for Byzantine agreement.
- Connectivity bounds.
- Weak Byzantine agreement.
- Time lower bounds for stopping agreement and Byzantine agreement.
- Reading: Sections 6.3-6.7, [Aguilera, Toueg], [Keidar-Rajsbaum]
- Next:
 - Other distributed agreement problems
 - Reading: Chapter 7 (but skim 7.2)
Byzantine agreement

• Recall correctness conditions:
 – Agreement: No two nonfaulty processes decide on different values.
 – Validity: If all nonfaulty processes start with the same v, then v is the only allowable decision for nonfaulty processes.
 – Termination: All nonfaulty processes eventually decide.

• Presented EIG algorithm for Byzantine agreement, using:
 – Exponential communication (in f)
 – f+1 rounds
 – n > 3f
EIG algorithm for Byzantine agreement

• Use EIG tree.
• Relay messages for f+1 rounds.
• Decorate the EIG tree with values from V, replacing any garbage messages with default value v_0.
• Call the decorations $\text{val}(x)$, where x is any node label.
• Decision rule:
 – Redecorate the tree bottom-up, defining $\text{newval}(x)$.
 • Leaf: $\text{newval}(x) = \text{val}(x)$
 • Non-leaf: $\text{newval}(x) =$
 – newval of strict majority of children in the tree, if majority exists,
 – v_0 otherwise.
 – Final decision: $\text{newval}(\lambda)$ (newval at root)
Example: \(n = 4, f = 1 \)

- \(T_{4,1} \):
- Consider a possible execution in which \(p_3 \) is faulty.
- Initial values 1 1 0 0
- Round 1
- Round 2
Example: \(n = 4, f = 1 \)

- Now calculate newvals, bottom-up, choosing majority values, \(v_0 = 0 \) if no majority.

Corrected by taking majority
Correctness proof

• **Lemma 1:** If \(x \) ends with a nonfaulty process index then \(\text{val}(x)_i = \text{val}(x)_j \) for every nonfaulty \(i \) and \(j \).

• In example, **such nodes are:**

```
12 λ 43
14 41 32 34
13 23 21 24 42
```

• **Lemma 2:** If \(x \) ends with a nonfaulty process index then \(\exists v \) such that \(\text{val}(x)_i = \text{newval}(x)_i = v \) for every nonfaulty \(i \).

• **Proof:** Induction on level in the tree, bottom up.
Main correctness conditions

• Validity:
 – Uses Lemma 2.

• Termination:
 – Obvious.

• Agreement:
Agreement

• **Path covering:** Subset of nodes containing at least one node on each path from root to leaf:

\[\lambda \]

- 12 13 14 21 23 24 31 32 34 41 42 43

• **Common node:** One for which all nonfaulty processes have the same newval.
 - All nodes whose labels end in nonfaulty process index are common.
Agreement

- **Lemma 3:** There exists a path covering all of whose nodes are common.
- **Proof:**
 - Let $C = \text{nodes with labels of the form } x_j, j \text{ nonfaulty}$.

- **Lemma 4:** If there’s a common path covering of the subtree rooted at any node x, then x is common.

- **Lemma 5:** The root is common.
- **Yields Agreement.**
Complexity bounds

• As for EIG for stopping agreement:
 – Time: $f+1$
 – Communication: $O(n^{f+1})$

• But now, also requires $n > 3f$ processors.

• Q: Is $n > 3f$ necessary?
Lower bound on the number of processes for Byzantine Agreement
Number of processors for Byzantine agreement

• \(n > 3f \) is necessary!
 – Holds for any \(n \)-node (undirected) graph.
 – For graphs with low connectivity, may need even more processors.
 – Number of failures that can be tolerated for Byzantine agreement in an undirected graph \(G \) has been completely characterized, in terms of number of nodes and connectivity.

• **Theorem 1**: 3 processes cannot solve Byzantine Agreement with 1 possible failure.
Proof (3 vs. 1 BA)

- By contradiction. Suppose algorithm A, consisting of processes 1, 2, 3, solves BA with 1 possible failure.
- Construct new system S from 2 copies of A, with initial values as follows:
 - What is S?
 - A synchronous system of some kind.
 - Not required to satisfy any particular correctness conditions.
 - Not necessarily a correct BA algorithm for the 6-node ring.
 - Just some synchronous system, which runs and does something.
 - We’ll use it to get our contradiction.
Proof (3 vs 1 BA)

- Consider 2 and 3 in S:
- Looks to them like:
 - They’re in A, with a faulty process 1.
 - 1 emulates 1′-2′-3′-1 from S.
- In A, 2 and 3 must decide 0
- So by indistinguishability, they decide 0 in S also.
Proof (3 vs 1 BA)

• Now consider 1’ and 2’ in S.
• Looks to them like:
 – They’re in A with a faulty process 3.
 – 3 emulates 3’-1-2-3 from S.
• They must decide 1 in A, so they decide 1 in S also.
Proof (3 vs 1 BA)

- Finally, consider 3 and 1’ in S:
 - Looks to them like:
 - They’re in A, with a faulty process 2.
 - 2 emulates 2’-3’-1-2 from S.
 - In A, 3 and 1 must agree.
 - So by indistinguishability, 3 and 1’ agree in S also.

- But we already know that process 1’ decides 1 and process 3 decides 0, in S.
- Contradiction!
Discussion

• We get this contradiction even if the original algorithm A is assumed to “know n”.

• That simply means that:
 – The processes in A have the number 3 hard-wired into their state.
 – Their correctness properties are required to hold only when they are actually configured into a triangle.

• We are allowed to use these processes in a different configuration S---as long as we don’t claim any particular correctness properties for S.
Impossibility for $n = 3f$

- **Theorem 2:** n processes can’t solve BA, if $n \leq 3f$.
- **Proof:**
 - Similar construction, with f processes treated as a group.
 - Or, can use a reduction:
 - Show how to transform a solution for $n \leq 3f$ to a solution for 3 vs. 1.
 - Since 3 vs. 1 is impossible, we get a contradiction.

- Consider $n = 2$ as a special case:
 - $n = 2$, $f = 1$
 - Each could be faulty, requiring the other to decide on its own value.
 - Or both nonfaulty, which requires agreement, contradiction.

- So from now on, assume $3 \leq n \leq 3f$.
- Assume a Byzantine Agreement algorithm A for (n,f).
- Transform it into a BA algorithm B for $(3,1)$.
Transforming A to B

• Algorithm:
 – Partition A-processes into groups I_1, I_2, I_3, where $1 \leq |I_1|, |I_2|, |I_3| \leq f$.
 – Each B_i process simulates the entire I_i group.
 – B_i initializes all processes in I_i with B_i’s initial value.
 – At each round, B_i simulates sending messages:
 • Local: Just simulate locally.
 • Remote: Package and send.
 – If any simulated process decides, B_i decides the same (use any).

• Show B satisfies correctness conditions:
 – Consider any execution of B with at most 1 fault.
 – Simulates an execution of A with at most f faults.
 – Correctness conditions must hold in the simulated execution of A.
 – Show these all carry over to B’s execution.
B’s correctness

• **Termination:**
 - If B_i is nonfaulty in B, then it simulates only nonfaulty processes of A (at least one).
 - Those terminate, so B_i does also.

• **Agreement:**
 - If B_i, B_j are nonfaulty processes of B, they simulate only nonfaulty processes of A.
 - Agreement in A implies all these agree.
 - So B_i, B_j agree.

• **Validity:**
 - If all nonfaulty processes of B start with v, then so do all nonfaulty processes of A.
 - Then validity of A implies that all nonfaulty A processes decide v, so the same holds for B.
General graphs and connectivity bounds

• $n > 3f$ isn’t the whole story:
 – 4 processes, can’t tolerate 1 fault:

• **Theorem 3:** BA is solvable in an n-node graph G, tolerating f faults, if and only if both of the following hold:
 – $n > 3f$, and
 – $\text{conn}(G) > 2f$.

• $\text{conn}(g)$ = minimum number of nodes whose removal results in either a disconnected graph or a 1-node graph.

• **Examples:**

 - $\text{conn} = 1$
 - $\text{conn} = 3$
 - $\text{conn} = 3$
Proof: “If” direction

• **Theorem 3:** BA is solvable in an n-node graph G, tolerating f faults, if and only if n > 3f and conn(G) > 2f.
• **Proof ("if"):**
 – Suppose both hold.
 – Then we can simulate a total-connectivity algorithm.
 – Key is to emulate reliable communication from any node i to any other node j.
 – Rely on **Menger’s Theorem**, which says that a graph is c-connected (that is, has conn ≥ c) if and only if each pair of nodes is connected by ≥ c node-disjoint paths.
 – Since conn(G) ≥ 2f + 1, we have ≥ 2f + 1 node-disjoint paths between i and j.
 – To send message, send on all these paths (assumes graph is known).
 – Majority must be correct, so take majority message.
Proof: “Only if” direction

• **Theorem 3**: BA is solvable in an n-node graph G, tolerating f faults, if and only if $n > 3f$ and $\text{conn}(G) > 2f$.

• **Proof (“only if”)**:
 – We already showed $n > 3f$; remains to show $\text{conn}(G) > 2f$.
 – Show key idea with simple case, $\text{conn} = 2$, $f = 1$.
 – Canonical example:
 • Disconnect 1 and 3 by removing 2 and 4:
 – Proof by contradiction.
 – Assume some algorithm A that solves BA in this canonical graph, tolerating 1 failure.
Proof (conn = 2, 1 failure)

• Now construct S from two copies of A.

• Consider 1, 2, and 3 in S:
 – Looks to them like they’re in A, with a faulty process 4.
 – In A, 1, 2, and 3 must decide 0.
 – So they decide 0 in S also.

• Similarly, 1’, 2’, and 3’ decide 1 in S.
Proof (conn = 2, 1 failure)

- Finally, consider 3’, 4’, and 1 in S:
 - Looks to them like they’re in A, with a faulty process 2.
 - In A, they must agree, so they also agree in S.
 - But 3’ decides 0 and 1 decides 1 in S, contradiction.

- Therefore, we can’t solve BA in canonical graph, with 1 failure.

- As before, can generalize to conn(G) ≤ 2f, or use a reduction.
Byzantine processor bounds

• The bounds $n > 3f$ and $\text{conn} > 2f$ are fundamental for consensus-style problems with Byzantine failures.

• Same bounds hold, in synchronous settings with f Byzantine faulty processes, for:
 – Byzantine Firing Squad synchronization problem
 – Weak Byzantine Agreement
 – Approximate agreement

• Also, in timed (partially synchronous settings), for maintaining clock synchronization.

• Proofs used similar methods.
Weak Byzantine Agreement

[Lamport]

• Correctness conditions for BA:
 – Agreement: No two nonfaulty processes decide on different values.
 – Validity: If all nonfaulty processes start with the same v, then v is the only allowable decision for nonfaulty processes.
 – Termination: All nonfaulty processes eventually decide.

• Correctness conditions for Weak BA:
 – Agreement: Same as for BA.
 – Validity: If all processes are nonfaulty and start with the same v, then v is the only allowed decision value.
 – Termination: Same as for BA.

• Limits the situations where the decision is forced to go a certain way.

• Similar style to validity condition for 2-Generals problem.
WBA Processor Bounds

• **Theorem 4**: Weak BA is solvable in an n-node graph G, tolerating f faults, if and only if $n > 3f$ and $\text{conn}(G) > 2f$.

• Same bounds as for BA.

• **Proof**:
 – “If”: Follows from results for ordinary BA.
 – “Only if”:
 • By constructions like those for ordinary BA, but slightly more complicated.
 • Show 3 vs. 1 here, rest LTTR.
Proof (3 vs. 1 Weak BA)

• By contradiction. Suppose algorithm A, consisting of procs 1, 2, 3, solves WBA with 1 fault.
• Let $\alpha_0 =$ execution in which everyone starts with 0 and there are no failures; results in decision 0.
• Let $\alpha_1 =$ execution in which everyone starts with 1 and there are no failures; results in decision 1.
• Let $b =$ upper bound on number of rounds for all processes to decide, in both α_0 and α_1.
• Construct new system S from $2b$ copies of A:
Proof (3 vs. 1 Weak BA)

• Claim: Any two adjacent processes in S must decide the same thing.
 – Because it looks to them like they are in A, and they must agree in A.
• So everyone decides the same in S.
• WLOG, all decide 1.
Proof (3 vs. 1 Weak BA)

- Now consider a block of $2b + 1$ consecutive processes that begin with 0:

```
1 2 3 1 2 3 1 2 3
0 0 0 0 0 0 0 0 0
```

- **Claims:**
 - To all but the endpoints, the execution of S is indistinguishable from α_0, the failure-free execution in which everyone starts with 0, for 1 round.
 - To all but two at each end, indistinguishable from α_0 for 2 rounds.
 - To all but three at each end, indistinguishable from α_0 for 3 rounds.
 - ...
 - To midpoint, indistinguishable for b rounds.

- But b rounds are enough for the midpoint to decide 0, contradicting the fact that everyone decides 1 in S.
Lower bound on the number of rounds for Byzantine agreement
Lower bound on number of rounds

- Notice that \(f+1 \) rounds are used in all the agreement algorithms we’ve seen so far---both stopping and Byzantine.
- That’s inherent: \(f+1 \) rounds are needed in the worst-case, even for simple stopping failures.
- Assume an \(f \)-round algorithm \(A \) tolerating \(f \) faults, and get a contradiction.
- Restrictions on \(A \) (WLOG):
 - \(n \)-node complete graph.
 - Decisions at end of round \(f \).
 - \(V = \{0,1\} \)
 - All-to-all communication at every round \(\leq f \).
Special case: \(f = 1 \)

- **Theorem 5:** Suppose \(n \geq 3 \). There is no \(n \)-process 1-fault stopping agreement algorithm in which nonfaulty processes always decide at the end of round 1.
 - **Proof:** Suppose A exists.
 - Construct a chain of executions, each with at most one failure, such that:
 - First has (unique) decision value 0.
 - Last has decision value 1.
 - Any two consecutive executions in the chain are indistinguishable to some process i that is nonfaulty in both. So i must decide the same in both executions, and the two must have the same decision values.
 - Decision values in first and last executions must be the same.
 - Contradiction.
Round lower bound, $f = 1$

- α_0: All processes have input 0, no failures.
- ...
- α_k (last one): All inputs 1, no failures.
- Start the chain from α_0.
- Next execution, α_1, removes message 1 → 2.
 - α_0 and α_1 indistinguishable to everyone except 1 and 2; since $n \geq 3$, there is some other process.
 - These processes are nonfaulty in both executions.
- Next execution, α_2, removes message 1 → 3.
 - α_1 and α_2 indistinguishable to everyone except 1 and 3, hence to some nonfaulty process.
- Next, remove message 1 → 4.
 - Indistinguishable to some nonfaulty process.
Continuing…

- Having removed all of process 1’s messages, change 1’s input from 0 to 1.
 - Looks the same to everyone else.
- We can’t just keep removing messages, since we are allowed at most one failure in each execution.
- So, we continue by replacing missing messages, one at a time.
- Repeat with process 2, 3, and 4, eventually reach the last execution: all inputs 1, no failures.
Special case: \(f = 2 \)

- **Theorem 6:** Suppose \(n \geq 4 \). There is no \(n \)-process 2-fault stopping agreement algorithm in which nonfaulty processes always decide at the end of round 2.

- **Proof:** Suppose \(A \) exists.
 - Construct another chain of executions, each with at most 2 failures.
 - This time a bit longer and more complicated.
 - Start with \(\alpha_0 \): All processes have input 0, no failures, 2 rounds:
 - Work toward \(\alpha_n \), all 1’s, no failures.
 - Each consecutive pair is indistinguishable to some nonfaulty process.
 - Use intermediate execs \(\alpha_i \), in which:
 - Processes 1,\ldots,i have initial value 1.
 - Processes i+1,\ldots,n have initial value 0.
 - No failures.
Special case: \(f = 2 \)

- Show how to connect \(\alpha_0 \) and \(\alpha_1 \).
 - That is, change process 1’s initial value from 0 to 1.
 - Other intermediate steps essentially the same.
- Start with \(\alpha_0 \), work toward killing p1 at the beginning, to change its initial value, by removing messages.
- Then replace the messages, working back up to \(\alpha_1 \).
- Start by removing p1’s round 2 messages, one by one.
- Q: Continue by removing p1’s round 1 messages?
 - No, because consecutive executions would not look the same to anyone:
 - E.g., removing 1 \(\rightarrow \) 2 at round 1 allows p2 to tell everyone about the failure.
Special case: \(f = 2 \)

- Removing \(1 \rightarrow 2 \) at round 1 allows \(p2 \) to tell all other processes about the failure:

\[
\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{array}
\]

vs.

\[
\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{array}
\]

- Distinguishable to everyone.
- So we must do something more elaborate.
- Recall that we can allow 2 processes to fail in some executions.
- Use many steps to remove a single round 1 message \(1 \rightarrow i \); in these steps, both 1 and \(i \) will be faulty.
Removing p1’s round 1 messages

- Start with execution where p1 sends to everyone at round 1, and only p1 is faulty.
- Remove round 1 message 1 → 2:
 - p2 starts out nonfaulty, so sends all its round 2 messages.
 - Now make p2 faulty.
 - Remove p2’s round 2 messages, one by one, until we reach an execution where 1 → 2 at round 1, but p2 sends no round 2 messages.
 - Now remove the round 1 message 1 → 2.
 - Executions look the same to all but 1 and 2 (and they’re nonfaulty).
 - Replace all the round 2 messages from p2, one by one, until p2 is no longer faulty.
- Repeat to remove p1’s round 1 messages to p3, p4,…
- After removing all of p1’s round 1 messages, change p1’s initial value from 0 to 1, as needed.
General case: Any f

- **Theorem 7**: Suppose $n \geq f + 2$. There is no n-process f-fault stopping agreement algorithm in which nonfaulty processes always decide at the end of round f.

- **Proof**: Suppose A exists.
 - Same ideas, longer chain.
 - Must fail f processes in some executions in the chain, in order to remove all the required messages, at all rounds.
 - Construction in book, LTTR.

- **Newer proof [Aguilera, Toueg]**:
 - Uses ideas from [FLP] impossibility of consensus.
 - They assume strong validity, but the proof works for our weaker validity condition also.
Proof:
- By contradiction. Assume A solves stopping agreement for f failures and everyone decides after exactly f rounds.
- Restrict attention to executions in which at most one process fails during each round.
- Recall failure at a round allows process to miss sending an arbitrary subset of the messages, or to send all but halt before changing state.
- Consider vector of initial values as a 0-round execution.
-Defs (adapted from [Fischer, Lynch, Paterson]): \(\alpha \), an execution that completes some finite number (possibly 0) of rounds, is:
 - 0-valent, if 0 is the only decision that can occur in any execution (of the kind we consider) that extends \(\alpha \).
 - 1-valent, if 1 is...
 - Univalent, if \(\alpha \) is either 0-valent or 1-valent (essentially decided).
 - Bivalent, if both decisions occur in some extensions (undecided).
Initial bivalence

• **Lemma 1**: There is some 0-round execution (vector of initial values) that is bivalent.
• **Proof (adapted from [FLP])**:
 – Assume for contradiction that all 0-round executions are univalent.
 – 000…0 is 0-valent
 – 111…1 is 1-valent
 – So there must be two 0-round executions that differ in the value of just one process, say i, such that one is 0-valent and the other is 1-valent.
 – But this is impossible, because if process i fails at the start, no one else can distinguish the two 0-round executions.
Bivalence through f-1 rounds

- **Lemma 2:** For every k, $0 \leq k \leq f$-1, there is a bivalent k-round execution.

- **Proof:** By induction on k.
 - **Base (k=0):** Lemma 1.
 - **Inductive step:** Assume for k, show for $k+1$, where $k < f$ -1.
 - Assume bivalent k-round execution α.
 - Assume for contradiction that every 1-round extension of α (with at most one new failure) is univalent.
 - Let α^* be the 1-round extension of α in which no new failures occur in round $k+1$.
 - By assumption, this is univalent, WLOG 1-valent.
 - Since α is bivalent, there must be another 1-round extension of α, α^0, that is 0-valent.
Bivalence through f-1 rounds

• In α^0, some single process i fails in round $k+1$, by not sending to some subset of the processes, say $J = \{j_1, j_2, \ldots j_m\}$.
• Define a chain of $(k+1)$-round executions, $\alpha^0, \alpha^1, \alpha^2, \ldots, \alpha^m$.
• Each α^l in this sequence is the same as α^0 except that i also sends messages to $j_1, j_2, \ldots j_l$.
 – Adding in messages from i, one at a time.
• Each α^l is univalent, by assumption.
• Since α^0 is 0-valent, there are 2 possibilities:
 – At least one of these is 1-valent, or
 – All of these are 0-valent.
Case 1: At least one α^l is 1-valent

- Then there must be some l such that α^{l-1} is 0-valent and α^l is 1-valent.
- But α^{l-1} and α^l differ after round $k+1$ only in the state of one process, j_l.
- We can extend both α^{l-1} and α^l by simply failing j_l at beginning of round $k+2$.
 - There is actually a round $k+2$ because we've assumed $k < f-1$, so $k+2 \leq f$.
- And no one left alive can tell the difference!
- Contradiction for Case 1.
Case 2: Every α^l is 0-valent

• Then compare:
 – α^m, in which i sends all its round k+1 messages and then fails, with
 – α^*, in which i sends all its round k+1 messages and does not fail.
• No other differences, since only i fails at round k+1 in α^m.
• α^m is 0-valent and α^* is 1-valent.
• Extend to full f-round executions:
 – α^m, by allowing no further failures,
 – α^*, by failing i right after round k+1 and then allowing no further failures.
• No one can tell the difference.
• Contradiction for Case 2.

• So we’ve proved:
• Lemma 2: For every k, $0 \leq k \leq f-1$, there is a bivalent k-round execution.
And now the final round…

- **Lemma 3:** There is an f-round execution in which two nonfaulty processes decide differently.
- **Contradicts the problem requirements.**
- **Proof:**
 - Use Lemma 2 to get a bivalent $(f-1)$-round execution α with $\leq f-1$ failures.
 - In every 1-round extension of α, everyone who hasn’t failed must decide (and agree).
 - Let α^* be the 1-round extension of α in which no new failures occur in round f.
 - Everyone who is still alive decides after α^*, and they must decide the same thing. WLOG, say they decide 1.
 - Since α is bivalent, there must be another 1-round extension of α, say α^0, in which some nonfaulty process decides 0 (and hence, all decide 0).
Disagreement after f rounds

- In α^0, some single process i fails in round f.
- Let j, k be two nonfaulty processes.
- Define a chain of three f-round executions, $\alpha^0, \alpha^1, \alpha^*$, where α^1 is identical to α^0 except that i sends to j in α^1 (it might not in α^0).

- Then $\alpha^1 \sim^k \alpha^0$.
- Since k decides 0 in α^0, k also decides 0 in α^1.
- Also, $\alpha^1 \sim^j \alpha^*$.
- Since j decides 1 in α^*, j also decides 1 in α^1.
- Yields disagreement in α^1, contradiction!

- So we have proved:
- **Lemma 3**: There is an f-round execution in which two nonfaulty processes decide differently.
- Which immediately yields the impossibility result.
Early-stopping agreement algorithms

- Tolerate \(f \) failures in general, but in executions with \(f' < f \) failures, terminate faster.
- [Dolev, Reischuk, Strong 90] Stopping agreement algorithm in which all nonfaulty processes terminate in \(\leq \min(f' + 2, f+1) \) rounds.
 - If \(f' + 2 \leq f \), decide “early”, within \(f' + 2 \) rounds; in any case decide within \(f+1 \) rounds.
- [Keidar, Rajsbaum 02] Lower bound of \(f' + 2 \) for early-stopping agreement.
 - Not just \(f' + 1 \). Early stopping requires an extra round.

Theorem 8: Assume \(0 \leq f' \leq f – 2 \) and \(f < n \). Every early-stopping agreement algorithm tolerating \(f \) failures has an execution with \(f' \) failures in which some nonfaulty process doesn’t decide by the end of round \(f' + 1 \).
Special case: \(f' = 0 \)

- **Theorem 9:** Assume \(2 \leq f < n \). Every early-stopping agreement algorithm tolerating \(f \) failures has a failure-free execution in which some nonfaulty process does not decide by the end of round 1.

- **Definition:** Let \(\alpha \) be an execution that completes some finite number (possibly 0) of rounds. Then \(\text{val}(\alpha) \) is the unique decision value in the extension of \(\alpha \) with no new failures.
 - Different from bivalence defs---now consider value in just one extension.

- **Proof:**
 - Again, assume executions in which at most one process fails per round.
 - Identify 0-round executions with vectors of initial values.
 - Assume, for contradiction, that everyone decides by round 1, in all failure-free executions.
 - \(\text{val}(000\ldots0) = 0, \text{val}(111\ldots1) = 1 \).
 - So there must be two 0-round executions \(\alpha^0 \) and \(\alpha^1 \), that differ in the value of just one process \(i \), such that \(\text{val}(\alpha^0) = 0 \) and \(\text{val}(\alpha^1) = 1 \).
Special case: $f' = 0$

• 0-round executions α^0 and α^1, differing only in the initial value of process i, such that $\text{val}(\alpha^0) = 0$ and $\text{val}(\alpha^1) = 1$.
• In the ff extensions of α^0 and α^1, all nonfaulty processes decide in just one round.
• Define:
 – β^0, 1-round extension of α^0, in which process i fails, sends only to j.
 – β^1, 1-round extension of α^1, in which process i fails, sends only to j.
• Then:
 – β^0 looks to j like ff extension of α^0, so j decides 0 in β^0 after 1 round.
 – β^1 looks to j like ff extension of α^1, so j decides 1 in β^1 after 1 round.
• β^0 and β^1 are indistinguishable to all processes except i, j.
• Define:
 – γ^0, infinite extension of β^0, in which process j fails right after round 1.
 – γ^1, infinite extension of β^1, in which process j fails right after round 1.
• By agreement, all nonfaulty processes must decide 0 in γ^0, 1 in γ^1.
• But γ^0 and γ^1 are indistinguishable to all nonfaulty processes, so they can’t decide differently, contradiction.
Next time…

- Other kinds of consensus problems:
 - k-agreement
 - Approximate agreement (skim)
 - Distributed commit

- Reading: Chapter 7