Class 7
Today’s plan

- Asynchronous systems
- Formal model
 - I/O automata
 - Executions and traces
 - Operations: composition, hiding
 - Properties and proof methods:
 - Invariants
 - Simulation relations

- Reading: Chapter 8

- Next:
 - Asynchronous network algorithms: Leader election, breadth-first search, shortest paths, spanning trees.
 - Reading: Chapters 14 and 15
Last time

• Finished synchronous network algorithms:
 – Lower bounds on number of rounds
 – k-agreement
• Commit:
 – 2-phase commit:
 • Weak termination only.
 – 3-phase commit:
 • Strong termination.
 • But depends strongly on synchrony:
 – Coordinator deduces that all processes are ready or failed, just by waiting sufficiently long so it knows that its messages have arrived.
Practical issues for 3-phase commit

• Depends on strong assumptions, which may be hard to guarantee in practice:
 – Synchronous model:
 • Could emulate with approximately-synchronized clocks, timeouts.
 – Reliable message delivery:
 • Could emulate with acks and retransmissions.
 • But if retransmissions add too much delay, then we can’t emulate the synchronous model accurately.
 • Leads to unbounded delays, asynchronous model.
 – Accurate diagnosis of process failures:
 • Get this “for free” in the synchronous model.
 • E.g., 3-phase commit algorithm lets process that doesn’t hear from another process i at a round conclude that i must have failed.
 • Very hard to guarantee in practice: In Internet, or even a LAN, how to reliably distinguish failure of a process from lost communication?

• Other consensus algorithms can be used for commit, including some that don’t depend on such strong timing and reliability assumptions.
Paxos consensus algorithm

• A more robust consensus algorithm, could be used for commit.
• Tolerates process stopping and recovery, message losses and delays,…
• Runs in partially synchronous model.
• Based on earlier algorithm [Dwork, Lynch, Stockmeyer].
• Algorithm idea:
 – Processes use unreliable leader election subalgorithm to choose coordinator, who tries to achieve consensus.
 – Coordinator decides based on active support from majority of processes.
 – Does not assume anything based on not receiving a message.
 – Difficulties arise when multiple coordinators are active---must ensure consistency.
• Practical difficulties with fault-tolerance in the synchronous model motivate studying the asynchronous model.
Asynchronous systems

- No timing assumptions
 - No rounds
- Two kinds of asynchronous models:
 - Asynchronous networks
 - Processes communicating via channels
 - Asynchronous shared-memory systems
 - Processes communicating via shared objects
Asynchronous network: Processes and channels

Q: Mathematically speaking, what are these ps and Cs?

A: “Reactive” components, which interact with their environments via input and output actions.
Asynchronous shared-memory system: Processes and objects

These processes and objects are also “reactive” components.
In both cases, reactive components.
So, we give a general model for reactive components.
Specifying problems and systems

- Processes, channels, and objects are automata
 - Take actions while changing state.
 - Reactive
 - Interact with environment via input and output actions.
 - Not just functions from input values to output values, but more flexible interactions.

- Execution:
 - Sequence of actions
 - Interleaving semantics

- External behavior (trace):
 - We observe external actions.
 - State and internal actions are hidden.
 - Problems specify allowable traces.
I/O Automata
Input/Output Automata

- General **mathematical modeling framework** for reactive components.
 - Little structure---must add structure to specialize it for networks, shared-memory systems,…

- **Designed for describing systems in a modular way:**
 - Supports description of individual system components, and how they compose to yield a larger system.
 - Supports description of systems at different **levels of abstraction**, e.g.:
 - Detailed implementation vs. more abstract algorithm description.
 - Optimized algorithm vs. simpler, unoptimized version.

- **Supports standard proof techniques:**
 - Invariants
 - **Simulation relations** (like running 2 algorithms side-by-side and relating their behavior step-by-step).
 - **Compositional reasoning** (prove properties of individual components; use to infer properties for overall system).
Input/output automaton

- State transition system
 - Transitions labeled by actions
- Actions classified as input, output, internal
 - Input, output are external.
 - Output, internal are locally controlled.
Input/output automaton

- $\text{sig} = (\text{in, out, int})$
 - input, output, internal actions (disjoint)
 - $\text{acts} = \text{in} \cup \text{out} \cup \text{int}$
 - $\text{ext} = \text{in} \cup \text{out}$
 - $\text{local} = \text{out} \cup \text{int}$
- states: Not necessarily finite
- $\text{start} \subseteq \text{states}$
- $\text{trans} \subseteq \text{states} \times \text{acts} \times \text{states}$
 - Input-enabled: Any input “enabled” in any state.
- tasks, partition of locally controlled actions
 - Used for liveness.
Remarks

- A step of an automaton is an element of trans.
- Action π is enabled in a state s if there is a step (s, π, s') for some s'.
- I/O automata must be input-enabled.
 - Every input action is enabled in every state.
 - Captures idea that an automaton cannot control inputs.
 - If we want restrictions, model the environment as another automaton and express restrictions in terms of the environment.
 - Could allow a component to detect bad inputs and halt, or exhibit unconstrained behavior for bad inputs.
- Tasks correspond to “threads of control”.
 - Used to define fairness (give turns to all tasks).
 - Needed to guarantee liveness properties (e.g., the system keeps making progress, or eventually terminates).
Channel automaton

- Reliable unidirectional FIFO channel between two processes.
 - Fix message alphabet M.

- signature
 - input actions: send(m), m ∈ M
 - output actions: receive(m), m ∈ M
 - no internal actions

- states
 - queue: FIFO queue of M, initially empty
Channel automaton

- **trans**
 - send(m)
 - effect: add m to (end of) **queue**
 - receive(m)
 - precondition: m is at head of **queue**
 - effect: remove head of **queue**

- **tasks**
 - All receive actions in one task.
Channel automaton

- **trans**
 - send\((m)_{i,j}\)
 - effect: add \(m\) to (end of) queue
 - receive\((m)_{i,j}\)
 - precondition: \(m\) is at head of queue
 - effect: remove head of queue

- **tasks**
 - All receive actions in one task
A process

• E.g., in a consensus protocol.
• See book, p. 205, for code details.
• Inputs arrive from the outside.
• Process sends/receives values, collects vector of values for all processes.
• When vector is filled, outputs a decision obtained as a function of the vector.
• Can get new inputs, change values, send and output repeatedly.
• Tasks for:
 – Sending to each individual neighbor.
 – Outputting decisions.
Executions

- An I/O automaton executes as follows:
 - Start at some start state.
 - Repeatedly take step from current state to new state.
- Formally, an execution is a finite or infinite sequence:
 - $s_0 \pi_1 s_1 \pi_2 s_2 \pi_3 s_3 \pi_4 s_4 \pi_5 s_5 ...$ (if finite, ends in state)
 - s_0 is a start state
 - $(s_i, \pi_{i+1}, s_{i+1})$ is a step (i.e., in trans)

$\lambda, \text{send}(a), a, \text{send}(b), ab, \text{receive}(a), b, \text{receive}(b), \lambda$
Execution fragments

- An I/O automaton executes as follows:
 - Start at some start state.
 - Repeatedly take step from current state to new state.
- Formally, an execution is a sequence:
 - \(s_0 \pi_1 s_1 \pi_2 s_2 \pi_3 s_3 \pi_4 s_4 \pi_5 s_5 \ldots \)
 - \(s_0 \) is a start state
 - \((s_i, \pi_{i+1}, s_{i+1})\) is a step.
Invariants and reachable states

- A state is **reachable** if it appears in some execution.
 - Equivalently, at the end of some finite execution.

- An **invariant** is a predicate that is true for every reachable state.
 - Most important tool for proving properties of concurrent/distributed algorithms.
 - Typically proved by induction on length of execution.
Traces

- Allow us to focus on components’ external behavior.
- Useful for defining correctness.
- A trace of an execution is the subsequence of external actions in the execution.
 - No states, no internal actions.
 - Denoted trace(\(\alpha\)), where \(\alpha\) is an execution.
 - Models “observable behavior”.

\[
\lambda, \text{send}(a), a, \text{send}(b), ab, \text{receive}(a), b, \text{receive}(b), \lambda
\]

\[
\text{send}(a), \text{send}(b), \text{receive}(a), \text{receive}(b)
\]
Operations on I/O Automata
Operations on I/O automata

- To describe how systems are built out of components, the model has operations for composition, hiding, renaming.

- Composition:
 - “Put multiple automata together.”
 - Output actions of one may be input actions of others.
 - All components having an action perform steps involving that action at the same time (“synchronize on actions”).

- Composing finitely many or countably infinitely many automata $A_i, i \in I$:

- Need compatibility conditions:
 - Internal actions aren’t shared:
 - $\text{int}(A_i) \cap \text{acts}(A_j) = \emptyset$
 - Only one automaton controls each output:
 - $\text{out}(A_i) \cap \text{out}(A_j) = \emptyset$
 - But output of one automaton can be an input of one or more others.
 - No action is shared by infinitely many A_is.
Operations on I/O automata
Composition of compatible automata

- Compose two automata A and B (see book for general case).
 - $\text{out}(A \times B) = \text{out}(A) \cup \text{out}(B)$
 - $\text{int}(A \times B) = \text{int}(A) \cup \text{int}(B)$
 - $\text{in}(A \times B) = \text{in}(A) \cup \text{in}(B) - (\text{out}(A) \cup \text{out}(B))$
 - $\text{states}(A \times B) = \text{states}(A) \times \text{states}(B)$
 - $\text{start}(A \times B) = \text{start}(A) \times \text{start}(B)$
 - $\text{trans}(A \times B)$: includes (s, π, s') iff
 - $(s_A, \pi, s'_A) \in \text{trans}(A)$ if $\pi \in \text{acts}(A); s_A = s'_A$ otherwise.
 - $(s_B, \pi, s'_B) \in \text{trans}(B)$ if $\pi \in \text{acts}(B); s_B = s'_B$ otherwise.
 - $\text{tasks}(A \times B) = \text{tasks}(A) \cup \text{tasks}(B)$

- Notation: $\prod_{i \in I} A_i$, for composition of $A_i : i \in I$ (I countable)
Composition of channels and consensus processes

\[
\begin{align*}
\text{Composition of channels and consensus processes} \\
p_1 & \quad C_{1,2} \quad C_{2,1} \\
\text{init}(v)_1 & \quad \text{send}(m)_{1,2} \quad \text{receive}(m)_{1,2} \\
\text{decide}(v)_1 & \quad \text{receive}(m)_{2,1} \quad \text{send}(m)_{2,1}
\end{align*}
\]
Composition: Basic results

- Projection
 - Execution of composition “looks good” to each component.

- Pasting
 - If execution “looks good” to each component, it is good overall.

- Substitutivity
 - Can replace a component with one that implements it.
Composition: Basic results

Theorem 1: Projection

- If $\alpha \in \text{execs}(\prod A_i)$ then $\alpha|A_i \in \text{execs}(A_i)$ for every i.
- If $\beta \in \text{traces}(\prod A_i)$ then $\beta|A_i \in \text{traces}(A_i)$ for every i.
Composition: Basic results

Theorem 2: Pasting

Suppose β is a sequence of external actions of $\prod A_i$.

- If $\alpha_i \in \text{execs}(A_i)$ and $\beta|A_i = \text{trace}(\alpha_i)$ for every i, then there is an execution α of $\prod A_i$ such that $\beta = \text{trace}(\alpha)$ and $\alpha_i = \alpha|A_i$ for every i.
- If $\beta |A_i \in \text{traces}(A_i)$ for every i then $\beta \in \text{traces}(\prod A_i)$.
Composition: Basic results

Theorem 3: Substitutivity

- Suppose A_i and A'_i have the same external signature, and $\text{traces}(A_i) \subseteq \text{traces}(A'_i)$ for every i.
 - A kind of “implementation” relationship.
- Then $\text{traces}(\prod A_i) \subseteq \text{traces}(\prod A'_i)$ (assuming compatibility).

Proof:

- Follows from trace pasting and projection, Theorems 1 and 2.
Other operations on I/O automata

• Hiding
 – Make some output actions internal.
 – Hides internal communication among components of a system.

• Renaming
 – Change names of some actions.
 – Action names are important for specifying component interactions.
 – E.g., define a “generic” automaton, then rename actions to define many instances to use in a system.
 • As we did with channel automata.
Fairness
Fairness

- Task T (set of actions) corresponds to a “thread of control”.
- Used to define “fair” executions: a task that is continuously enabled gets to take a step.
- Needed to prove liveness properties, e.g., that something eventually happens, like an algorithm terminating.

- Formally, execution (or fragment) \(\alpha \) of A is fair to task T if one of the following holds:
 - \(\alpha \) is finite and T is not enabled in the final state of \(\alpha \).
 - \(\alpha \) is infinite and contains infinitely many events in T.
 - \(\alpha \) is infinite and contains infinitely many states in which T is not enabled.

- Execution of A is fair if it is fair to all tasks of A.
- Trace of A is fair if it is the trace of a fair execution of A.
Example

- **Channel**
 - Only one task (all receive actions).
 - A finite execution of Channel is fair iff queue is empty at the end.
 - **Q:** Is every infinite execution of Channel fair?

- **Consensus process**
 - Separate tasks for sending to each other process, and for output.
 - Means it “keeps trying” to do these forever.
Fairness and composition

- Fairness “behaves nicely” with respect to composition---results analogous to non-fair results:

Theorem 4: Projection
- If $\alpha \in \text{fairexecs}(\prod A_i)$ then $\alpha|A_i \in \text{fairexecs}(A_i)$ for every i.
- If $\beta \in \text{fairtraces}(\prod A_i)$ then $\beta|A_i \in \text{fairtraces}(A_i)$ for every i.

Theorem 5: Pasting
Suppose β is a sequence of external actions of $\prod A_i$.
- If $\alpha_i \in \text{fairexecs}(A_i)$ and $\beta|A_i = \text{trace}(\alpha_i)$ for every i, then there is a fair execution α of $\prod A_i$ such that $\beta = \text{trace}(\alpha)$ and $\alpha_i = \alpha|A_i$ for every i.
- If $\beta|A_i \in \text{fairtraces}(A_i)$ for every i then $\beta \in \text{fairtraces}(\prod A_i)$.
Theorem 6: Substitutivity

- Suppose A_i and A'_i have the same external signature, and $\text{fairtraces}(A_i) \subseteq \text{fairtraces}(A'_i)$ for every i.
 - Another kind of “implementation” relationship.
- Then $\text{fairtraces}(\prod A_i) \subseteq \text{fairtraces}(\prod A'_i)$.
Composition of channels and consensus processes

In fair executions:
- After init, keep sending latest val forever.
- All messages that are sent are delivered.
- After vector is full, output latest decision forever.
Properties and Proof Methods

- Compositional reasoning
- Invariants
- Trace properties
- Simulation relations
Compositional reasoning

- Use Theorems 1-6 to infer properties of a system from properties of its components.
- And vice versa.
Invariants

- A state is **reachable** if it appears in some execution (or, at the end of some finite execution).
- An **invariant** is a predicate that is true for every reachable state.
- Most important tool for proving properties of concurrent and distributed algorithms.
- Proving invariants:
 - Typically, by induction on length of execution.
 - Often prove batches of inter-dependent invariants together.
 - Step granularity is finer than round granularity, so proofs are harder and more detailed than those for synchronous algorithms.
Trace properties

- A trace property is essentially a set of allowable external behavior sequences.

- A **trace property** P is a pair of:
 - $\text{sig}(P)$: External signature (no internal actions).
 - $\text{traces}(P)$: Set of sequences of actions in $\text{sig}(P)$.

- Automaton A **satisfies** trace property P if (two different notions):
 - $\text{extsig}(A) = \text{sig}(P)$ and $\text{traces}(A) \subseteq \text{traces}(P)$
 - $\text{extsig}(A) = \text{sig}(P)$ and $\text{fairtraces}(A) \subseteq \text{traces}(P)$
Safety and liveness

• **Safety property:** “Bad” thing doesn't happen:
 – Nonempty (null trace is always safe).
 – Prefix-closed: Every prefix of a safe trace is safe.
 – Limit-closed: Limit of sequence of safe traces is safe.

• **Liveness property:** “Good” thing happens eventually:
 – Every finite sequence over acts(P) can be extended to a sequence in traces(P).
 – “It's never too late.”

• Can define safety/liveness for executions similarly.
• Fairness can be expressed as a liveness property for executions.
Automata as specifications

- Every I/O automaton specifies a trace property \((\text{extsig}(A), \text{traces}(A))\).
- So we can use an automaton as a problem specification.
- Automaton A “implements” automaton B if
 - \(\text{extsig}(A) = \text{extsig}(B)\)
 - \(\text{traces}(A) \subseteq \text{traces}(B)\)
Hierarchical proofs

- Important strategy for proving correctness of complex asynchronous distributed algorithms.
- Define a series of automata, each implementing the previous one ("successive refinement").
- Highest-level automaton model captures the "real" problem specification.
- Next level is a high-level algorithm description.
- Successive levels represent more and more detailed versions of the algorithm.
- Lowest level is the full algorithm description.
Hierarchical proofs

- For example:
 - High levels centralized, lower levels distributed.
 - High levels inefficient but simple, lower levels optimized and more complex.
 - High levels with large granularity steps, lower levels with finer granularity steps.
- In all these cases, lower levels are harder to understand and reason about.
- So instead of reasoning about them directly, relate them to higher-level descriptions.
- Method similar to what we saw for synchronous algorithms.
Hierarchical proofs

- Recall, for synchronous algorithms:
 - Optimized algorithm runs side-by-side with unoptimized version, and “invariant” proved to relate the states of the two algorithms.
 - Prove using induction.

- For asynchronous systems, things become harder:
 - Asynchronous model has more nondeterminism (in choice of new state, in order of steps).
 - So, harder to determine which execs to compare.

- One-way implementation relationship is enough:
 - For each execution of the lower-level algorithm, there is a corresponding execution of the higher-level algorithm.
 - “Everything the algorithm does is allowed by the spec.”
 - Don’t need the other direction: doesn’t matter if the algorithm does everything that is allowed.
Simulation relations

- Most common method of proving that one automaton implements another.
- Assume A and B have the same extsig, and R is a relation from states(A) to states(B).
- Then R is a simulation relation from A to B provided:
 - \(s_A \in \text{start}(A) \) implies there exists \(s_B \in \text{start}(B) \) such that \(s_A R s_B \).
 - If \(s_A, s_B \) are reachable states of A and B, \(s_A R s_B \) and \((s_A, \pi, s'_A) \) is a step, then there is an execution fragment \(\beta \) starting with \(s_B \) and ending with \(s'_B \) such that \(s'_A R s'_B \) and \(\text{trace}(\beta) = \text{trace}(\pi) \).
Simulation relations

- R is a simulation relation from A to B provided:
 - $s_A \in \text{start}(A)$ implies $\exists s_B \in \text{start}(B)$ such that $s_A \mathrel{R} s_B$.
 - If s_A, s_B are reachable states of A and B, $s_A \mathrel{R} s_B$ and (s_A, π, s'_A) is a step, then $\exists \beta$ starting with s_B and ending with s'_B such that $s'_A \mathrel{R} s'_B$ and $\text{trace}(\beta) = \text{trace}(\pi)$.
Simulation relations

- **Theorem:** If there is a simulation relation from A to B then traces(A) \(\subseteq\) traces(B).
- This means all traces of A, not just finite traces.
- **Proof:** Fix a trace of A, arising from a (possibly infinite) execution of A.
- Create a corresponding execution of B, using an iterative construction.

\[
\begin{align*}
S_{0,A} \xrightarrow{\Pi_1} S_{1,A} \xrightarrow{\Pi_2} S_{2,A} \xrightarrow{\Pi_3} S_{3,A} \xrightarrow{\Pi_4} S_{4,A} \xrightarrow{\Pi_5} S_{5,A}
\end{align*}
\]
Simulation relations

- **Theorem:** If there is a simulation relation from A to B then $\text{traces}(A) \subseteq \text{traces}(B)$.
Theorem: If there is a simulation relation from A to B then traces(A) ⊆ traces(B).
Simulation relations

- **Theorem:** If there is a simulation relation from A to B then \(\text{traces}(A) \subseteq \text{traces}(B) \).
Example: Channels

- Show two channels implement one.

- Rename some actions.

- Claim that $D = \text{hide}_{\{\text{pass}(m)\}} A \times B$ implements C, in the sense that $\text{traces}(D) \subseteq \text{traces}(C)$.
Recall: Channel automaton

- Reliable unidirectional FIFO channel.
- Signature
 - Input actions: send(m), m ∈ M
 - Output actions: receive(m), m ∈ M
 - No internal actions
- States
 - Queue: FIFO queue of M, initially empty
Channel automaton

- **trans**
 - send(m)
 - effect: add m to queue
 - receive(m)
 - precondition: m = head(queue)
 - effect: remove head of queue

- **tasks**
 - All receive actions in one task
Composing two channel automata

- Output of B is input of A
 - Rename receive(m) of B and send(m) of A to pass(m).
- \(D = \text{hide} \{ \text{pass}(m) | m \in M \} \) \(A \times B \) implements C
- Define simulation relation \(R \):
 - For \(s \in \text{states}(D) \) and \(u \in \text{states}(C) \), \(s R u \) iff \(u.\text{queue} \) is the concatenation of \(s.A.\text{queue} \) and \(s.B.\text{queue} \)
- Proof that this is a simulation relation:
 - Start condition: All queues are empty, so start states correspond.
 - Step condition: Define “step correspondence”:
Composing two channel automata

\[s \text{ R } u \text{ iff } u.\text{queue is concatenation of } s.\text{A.queue and } s.\text{B.queue} \]

- **Step correspondence:**
 - For each step \((s, \pi, s') \in \text{trans}(D) \) and \(u \) such that \(s \text{ R } u \),
 define execution fragment \(\beta \) of \(C \):
 - Starts with \(u \), ends with \(u' \) such that \(s' \text{ R } u' \).
 - \(\text{trace}(\beta) = \text{trace}(\pi) \)
 - Here, actions in \(\beta \) happen to depend only on \(\pi \), and
 uniquely determine post-state.
 - Same action if external, empty sequence if internal.
Composing two channel automata

$\text{send}(m)$ \quad $\text{pass}(m)$ \quad $\text{receive}(m)$

$s \ R \ u \ \iff \ u.\text{queue} \text{ is concatenation of } s.A.\text{queue} \text{ and } s.B.\text{queue}$

- **Step correspondence:**
 - $\pi = \text{send}(m)$ in D corresponds to $\text{send}(m)$ in C
 - $\pi = \text{receive}(m)$ in D corresponds to $\text{receive}(m)$ in C
 - $\pi = \text{pass}(m)$ in D corresponds to λ in C

- **Verify that this works:**
 - Actions of C are enabled.
 - Final states related by relation R. case analysis.

- Routine case analysis:
Showing R is a simulation relation

\[s \ R \ u \iff u.\text{queue} \text{ is concatenation of } s.A.\text{queue} \text{ and } s.B.\text{queue} \]

- **Case:** \(\pi = \text{send}(m) \)
 - No enabling issues (input).
 - Must check \(s' \ R \ u' \).
 - Since \(s \ R \ u \), \(u.\text{queue} \text{ is the concatenation of } s.A.\text{queue} \text{ and } s.B.\text{queue} \).
 - Adding the same \(m \) to the end of \(u.\text{queue} \text{ and } s.B.\text{queue} \text{ maintains the correspondence.} \)

- **Case:** \(\pi = \text{receive}(m) \)
 - Enabling: Check that \(\text{receive}(m) \), for the same \(m \), is also enabled in \(u \).
 - We know that \(m \) is first on \(s.A.\text{queue} \).
 - Since \(s \ R \ u \), \(m \) is first on \(u.\text{queue} \).
 - So enabled in \(u \).
 - \(s' \ R \ u' \): Since \(m \) removed from both \(s.A.\text{queue} \text{ and } u.\text{queue} \).
Showing R is a simulation relation

$s R u$ iff u.queue is concatenation of $s.A$.queue and $s.B$.queue

Case: $\pi = \text{pass}(m)$

- No enabling issues (since no high-level steps are involved).
- Must check $s' R u$:
 - Since $s R u$, u.queue is the concatenation of $s.A$.queue and $s.B$.queue.
 - Concatenation is unchanged as a result of this step, so also u.queue is the concatenation of $s'.A$.queue and $s'.B$.queue.
Next lecture

- Basic asynchronous network algorithms:
 - Leader election
 - Breadth-first search
 - Shortest paths
 - Spanning trees.

- Reading:
 - Chapters 14 and 15
6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.