6.852: Distributed Algorithms
Fall, 2009

Class 10
Today’s plan

• Simulating synchronous algorithms in asynchronous networks
• Synchronizers
• Lower bound for global synchronization
• Reading: Chapter 16
• Next:
 – Logical time
 – Reading: Chapter 18, [Lamport time, clocks…], [Mattern]
Minimum spanning tree, revisited

- In GHS, complications arise because different parts of the network can be at very different levels at the same time.

- Alternative, more synchronized approach:
 - Keep levels of nearby nodes close, by restricting the asynchrony.
 - Each process uses a level variable to keep track of the level of its current component (according to its local knowledge).
 - Process at level k delays all “interesting” processing until it hears that all its neighbors have reached level $\geq k$.
 - Looks (to each process) like global synchronization, but easier to achieve.
 - Each node inform its neighbors whenever it changes level.

- Resulting algorithm is simpler than GHS.

- Complexity:
 - Time: $O(n \log n)$, like GHS.
 - Messages: $O(|E| \log n)$, somewhat worse than GHS.
Strategy for designing asynchronous distributed algorithms

- Assume undirected graph $G = (V,E)$.
- Design a synchronous algorithm for G, transform it into an asynchronous algorithm using local synchronization.
- Synchronize at every round (not every “level” as above).
- Method works only for non-fault-tolerant algorithms.
 - In fact, no general transformation can work for fault-tolerant algorithms.
 - E.g., ordinary stopping agreement is solvable in synchronous networks, but unsolvable in asynchronous networks [FLP].
- Present a general strategy, some special implementations.
 - Describe in terms of sub-algorithms, modeled as abstract services.
 - [Raynal book], [Awerbuch papers]
- Then a lower bound on the time for global synchronization.
 - Larger than upper bounds for local synchronization.
Synchronous model, reformulated in terms of automata

- Global synchronizer automaton
- User process automata:
 - Processes of an algorithm that uses the synchronizer.
 - May have other inputs/outputs, for interacting with other programs.
- Interactions between user process i and synchronizer:
 - user-send($T,r)_i$
 - T = set of (message, destination) pairs, destinations are neighbors of i.
 - T = empty set \emptyset, if no messages sent by i at round r.
 - r = round number
 - user-rcv($T,r)_i$
 - T = set of (message, source) pairs, source a neighbor of i.
 - r = round number
Behavior of GlobSynch

• Manages global synchronization of rounds:
 – Users send packages of all their round 1 messages, using `user-send(T,r)` actions.
 – GlobSynch waits for all round 1 messages, sorts them, then delivers to users, using `user-rcv(T,r)` actions.
 – Users send round 2 messages, etc.

• Not exactly the synchronous model:
 – GlobSynch can receive round 2 messages from i before it finishes delivering all the round 1 messages.
 – But it doesn’t do anything with these until it’s finished round 1 deliveries.
 – So, essentially the same.

• GlobSynch synchronizes globally between each pair of rounds.
Requirements on each U_i

- **Well-formed:**
 - U_i sends the right kinds of messages, in the right order, at the right times.

- **Liveness:**
 - After receiving the messages for any round r, U_i eventually submits messages for round $r+1$.

- **See code for GlobSynch in [book, p. 534].**
 - State consists of:
 - A *tray* of messages for each (destination, round).
 - Some Boolean flags to keep track of which sends and rcvs have happened.
 - Transitions obvious.
 - Liveness expressed by tasks, one for each (destination, round).
Synchronizers
The Synchronizer Problem

- Design an automaton A that “implements” GlobSynch in the sense that it “looks the same” to each U_i:
 - Has the right interface.
 - Exhibits the right behavior:
 - \forall fair execution α of the U_is and A,
 - \exists fair execution α' of the U_is and GlobSynch, such that
 - $\forall i$, α is indistinguishable by U_i from α',
 $\alpha \sim_{U_i} \alpha'$.
- A “behaves like” GlobSynch, as far as any individual U_i can tell.
- Allows global reordering of events at different U_i.
Local Synchronizer, LocSynch

- Enforces local synchronization rather than global, still looks the same locally.

- Only one difference from GlobSynch:
 - Precondition for $\text{usr-rcv}(T,r)_i$.
 - Now, to deliver round r messages to user i, check only that i’s neighbors have sent round r messages.
 - Don’t wait for all nodes to get this far.

- **Lemma 1**: For every fair execution α of the U_is and LocSynch, there is a fair execution α' of the U_is and GlobSynch, such that for each U_i, $\alpha \sim U_i \alpha'$.

- **Proof**:
 - Can’t use a simulation relation, since global order of external events need not be the same, and simulation relations preserve external order.
 - So consider partial order of events and dependencies:
Proof sketch for Lemma 1

- Consider partial order of events and dependencies:
 - Each U_i event depends on previous U_i events.
 - $user-rcv(*,r)_i$ event depends on $user-send(*,r)_j$ for every neighbor j of i.
 - Take transitive closure.

- **Claim:** If you start with a (fair) execution of LocSynch system and reorder the events while preserving these dependencies, the result is still a (fair) execution of the LocSynch system.

- So, obtain α' by reordering the events of α so that:
 - These dependencies are preserved, and
 - Events associated with any round r precede those of round $r+1$.
- Can do this because round $r+1$ events never depend on round r events.
- This reordering preserves the view of each U_i.
- Also, yields the extra $user-rcv$ precondition needed by GlobSynch.
Trivial distributed algorithm to implement LocSynch

- Processes, point-to-point channels.
- SimpleSynch algorithm, process i:
 - After $\text{user-send}(T,r)_i$, send message to each neighbor j containing round number r and any basic algorithm messages i has for j.
 - Send (\emptyset,r) message if i has no basic algorithm messages for j.
 - Wait to receive round r messages from all neighbors.
 - Output user-rcv().

- **Lemma 2:**
 - For every fair execution α of U_is and SimpleSynch, there is a fair execution α' of U_is and LocSynch, such that for each U_i, $\alpha \sim U_i \alpha'$.

- Here, indistinguishable by all the U_is together---preserves external order.
SimpleSynch, cont’d

• **Proof of Lemma 2:**
 – No reordering needed, preserves order of external events.
 – Could use simulation relation.

• **Corollary:** For every fair execution α of U_is and SimpleSynch, there is a fair execution α' of U_is and GlobSynch, such that for each U_i, $\alpha \sim_{U_i} \alpha'$.

• **Proof:** Combine Lemmas 1 and 2.

• **Complexity:**
 – Messages: $\leq 2 |E|$ per simulated round.
 – Time:
 • Assume user always sends ASAP.
 • l, upper bound on task time for each task of each process.
 • d, upper bound on time for first message in channel to be delivered
 • Then r rounds completed within time $r (d + O(l))$.
Reducing the communication

- General Safe Synchronizer strategy [Awerbuch].
- If there’s no message \(U_i \rightarrow U_j \) at round \(r \) of underlying synchronous algorithm, try to avoid sending such messages in the simulating asynchronous algorithm.
- Can’t just omit them, since each process must determine, for each round \(r \), when it has received all of its round \(r \) messages.
- **Approach**: Separate the functions of:
 - Sending the actual messages, and
 - Determining when the round is over.
 - Algorithm decomposes into:
 - Front Ends + channels + SafeSynch
 - For the actual messages
 - For deciding when finished
Safe Synchronizers

• FE:
 – Sends, receives actual messages for each round r.
 – Sends acks for received messages.
 – Waits to receive acks for its own messages.

• Notes:
 – Sends messages only for actual messages of the underlying algorithm, no dummies.
 – Acks double the messages, but can still be a win.

• FE, cont’d:
 – When FE receives acks for all its round r messages, it’s safe: it knows that all its messages have been received by its neighbors.
 – Then sends OK for round r to SafeSynch.
 – Before responding to user, must know that it has received all its neighbors’ messages for round r.
 – Suffices to know that all its neighbors are safe, that is, that they know that their messages have been received.

• SafeSynch:
 – Tells each FE when its neighbors are safe!
 – After it has received OK from i and all its neighbors, sends GO to i.
Correctness of SafeSynch

• **Lemma 3:** For every fair execution α of SafeSynch system, there is a fair execution α' of LocSynch system, such that for each U_i, $\alpha \sim_{U_i} \alpha'$.

 (Actually, indistinguishable to all the U_is together.)

• **Corollary:** For every fair execution α of SafeSynch system, there is a fair execution α' of GlobSynch system, such that for each U_i, $\alpha \sim_{U_i} \alpha'$.

• Must still implement SafeSynch with a distributed algorithm…

• We now give three SafeSynch implementations, Synchronizers A, B, and Γ [Awerbuch].

• All implement SafeSynch, in the sense that the resulting systems are indistinguishable to each U_i (in fact, to all the U_is together).
SafeSynch Implementations

- **SafeSynch’s job:** After receiving **OK** for round \(r \) from \(i \) and all its neighbors, send **GO** for round \(r \) to \(i \).

- **Synchronizer \(A \):**
 - When process \(i \) receives **OK** \(i \), sends to neighbors.
 - When process \(i \) hears that it and all its neighbors have received OKs, outputs **GO** \(i \).

- **Obviously implements SafeSynch.**

- **Complexity:** To emulate \(r \) rounds:
 - **Messages:** \(\leq 2m + 2r|E| \), if synch alg sends \(m \) actual messages in \(r \) rounds.
 - **Time:** \(\leq r(3d + O(1)) \)
Comparisons

• To emulate \(r \) rounds:
 – SafeSynch system with Synchronizer \(\Lambda \)
 • Messages: \(2m + 2 \, r \, |E| \)
 • Time: \(r \, (3d + O(l)) \)
 – Simple Synch
 • Messages: \(2 \, r \, |E| \)
 • Time: \(r \, (d + O(l)) \)

• So Synchronizer \(\Lambda \) hasn’t improved anything.

• Next, Synchronizer \(\beta \), with lower message complexity, higher time complexity.

• Then Synchronizer \(\Gamma \), does well in terms of both messages and time, in an important subclass of networks (those with a “cluster” structure).
Synchronizer B

- Assumes rooted spanning tree of graph, height h.
- Algorithm:
 - All processes convergecast OK to root, using spanning tree edges.
 - Root then bcasts permission to GO, again using the spanning tree.
- Obviously implements SafeSynch (overkill).
- Complexity: To emulate r rounds, in which synch algorithm sends m messages:
 - Messages: $2m + 2rn$
 - Beats A: $2m + 2r|E|$
 - Time: $\leq r(2d + O(l) + 2h(d + O(l)))$

Messages and acks by FEs

Messages within B

FEs

B, convergecast and broadcast
Synchronizer Γ

- Hybrid of A and B.
- In “clustered” (almost partitionable) graphs, can get performance advantages of both:
 - Time like A, communication like B.
- Assume spanning forest of rooted trees, each tree spanning a “cluster” of nodes.
- Example:
 - Clusters = triangles
 - All edges between adjacent triangles.
 - Spanning forest:
- Use B within each cluster, A among clusters.
Decomposition of Γ

- **ClusterSynch:**
 - After receiving OKs from everyone in the cluster, sends cluster-OK to ForestSynch.
 - After receiving cluster-GO from ForestSynch, sends GO to everyone in the cluster.
 - Similar to B.

- **ForestSynch:**
 - Essentially, a safe synchronizer for the “Cluster Graph” G':
 - Nodes of G' are the clusters.
 - Edge between two clusters iff they contain nodes that are adjacent in G.

- **Lemma:** Γ Implements SafeSynch
- **Proof idea:**
 - Must show: If GO(r_i) occurs, then there must be a previous OK(r_i), and also previous OK(r_j) for every neighbor j of i.
Γ Implements SafeSynch

- **Show:** If $GO(r)_i$ occurs, then there must be a previous $OK(r)_i$, and also previous $OK(r)_j$ for every neighbor j of i.
- **Must be a previous $OK(r)_i$:**
 - $GO(r)_i$ preceded by $cluster-GO(r)$ for i’s cluster (ClusterSynch),
 - Which is preceded by $cluster-OK(r)$ for i’s cluster (ForestSynch),
 - Which is preceded by $OK(r)_i$ (ClusterSynch).
- **Must be previous $OK(r)_j$ for neighbor j in the same cluster as i.**
 - $GO(r)_i$ preceded by $cluster-GO(r)$ for i’s cluster (ClusterSynch),
 - Which is preceded by $cluster-OK(r)$ for i’s cluster (ForestSynch),
 - Which is preceded by $OK(r)_j$ (ClusterSynch).
- **Must be previous $OK(r)_j$ for neighbor j in a different cluster.**
 - Then the two clusters are neighboring clusters in the cluster graph G', because i and j are neighbors in G.
 - $GO(r)_i$ preceded by $cluster-GO(r)$ for i’s cluster (ClusterSynch),
 - Which is preceded by $cluster-OK(r)$ for j’s cluster (ForestSynch),
 - Which is preceded by $OK(r)_j$ (ClusterSynch).
Implementing ClusterSynch and ForestSynch

• Still need distributed algorithms for these…

• ClusterSynch:
 – Use variant of Synchronizer B on cluster tree:
 • Convergecast OKs to root on the cluster tree,
 • root outputs cluster-OK, receives cluster-GO,
 • root broadcasts GO on the cluster tree.

• ForestSynch:
 – Clusters run Synchronizer A.
 • But clusters can’t actually run anything…
 • So cluster roots run A.
 • Simulate communication channels between neighboring clusters by indirect communication paths between the roots.
 • These paths must exist: Run through the trees and across edges that join the clusters.

• cluster-OK and cluster-GO are internal actions of the cluster root processes.
Putting the pieces together

• In Γ, real process i emulates FrontEnd_i, process i in ClusterSynch algorithm, and process i in ForestSynch algorithm.
 – Composition of three automata.
• Real channel C_{ij} emulates channel from FrontEnd_i to FrontEnd_j, channel from i to j in ClusterSynch algorithm, and channel from i to j in ForestSynch algorithm.

• Orthogonal decompositions of Γ:
 – Physical: Nodes and channels.
 – Logical: FEs, ClusterSynch, and ForestSynch
 – Same system, 2 views.
 – Works because composition of automata is associative, commutative.

• Such decompositions are common for complex distributed algorithms:
 – Each node runs pieces of algorithms at several layers.

• Theorem 1: For every fair execution α of Γ system (or Λ, or β), there is a fair execution α' of GlobSynch system, such that for each U_i, $\alpha \sim_{U_i} \alpha'$.
Complexity of Γ

- Consider r rounds, in which the synchronous algorithm sends m messages.
- Let:
 - $h = \text{max height of a cluster tree}$
 - $e' = \text{total number of edges on shortest paths between roots of neighboring clusters}$.
- Messages: $2m + O(r(n + e'))$
- Time: $O(rh(d + l))$
- If $n + e' \ll |E|$, then Γ’s message complexity is much better than Λ’s.
- If $h \ll \text{height of spanning tree of entire network}$, then Γ’s time complexity is much better than $\ Beta$’s.
- Both of these are true for “nicely clustered” networks.
Comparison of Costs

- r rounds
- m messages sent by synchronous algorithm
- d, message delay
- Ignore local processing time l.
- $e' = \text{total length of paths between roots of neighboring clusters}$
- $h = \text{height of global spanning tree}$
- $h' = \text{max height of cluster tree}$

<table>
<thead>
<tr>
<th></th>
<th>Messages</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$2m + 2r</td>
<td>E</td>
</tr>
<tr>
<td>B</td>
<td>$2m + 2rn$</td>
<td>$O(rhd)$</td>
</tr>
<tr>
<td>Γ</td>
<td>$2m + O(r(n + e'))$</td>
<td>$O(rh'd)$</td>
</tr>
</tbody>
</table>
Example

- $p \times p$ grid of complete k-graphs, with all nodes of neighboring k-graphs connected.
- Clusters = k-graphs
- $h = O(p)$
- $h' = O(1)$

<table>
<thead>
<tr>
<th></th>
<th>Messages</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$2m + O(rp^2k^2)$</td>
<td>$O(rd)$</td>
</tr>
<tr>
<td>B</td>
<td>$2m + O(rp^2k)$</td>
<td>$O(rp^d)$</td>
</tr>
<tr>
<td>C</td>
<td>$2m + O(rp^2k)$</td>
<td>$O(rd)$</td>
</tr>
</tbody>
</table>
Application 1: Breadth-first search

- Recap:
 - SynchBFS:
 - Constructs BFS tree
 - O(|E|) messages, O(diam) rounds
 - When run in asynchronous network:
 - Constructs a spanning tree, but not necessarily BFS
 - Modified version, with corrections:
 - Constructs BFS tree
 - O(n |E|) messages, O(diam n d) time (counting pileups)

- BFS using synchronizer:
 - Runs more like SynchBFS, avoids corrections, pileups
 - With Synchronizer A:
 - O(diam |E|) messages, O(diam d) time
 - With Synchronizer B:
 - Better communication, but costs time.
 - With Synchronizer Γ:
 - Better overall, in clustered graphs.
Application 2: Broadcast and ack

- Use synchronizer to simulate synchronous broadcast-ack combination.
- Assume known leader, but no spanning tree.
- Recap:
 - Synchronous Bcast-ack:
 - Constructs spanning tree while broadcasting
 - $O(|E|)$ messages, $O(\text{diam})$ rounds
 - Asynchronous Bcast-ack:
 - Timing anomaly: Construct non-min-hop paths, on which acks travel.
 - $O(|E|)$ messages, $O(n d)$ time
- Using (e.g.) Synchronizer A:
 - Avoids timing anomaly.
 - Broadcast travels on min-hop paths, so acks follow min-hop paths.
 - $O(\text{diam} |E|)$ messages, $O(\text{diam} d)$ time
Application 3: Shortest paths

- Assume weights on edges.
- Without termination detection.
- Recap:
 - Synchronous Bellman-Ford:
 - Allows some corrections, due to low-cost high-hop-count paths.
 - $O(n |E|)$ messages, $O(n)$ rounds
 - Asynch Bellman-Ford
 - Many corrections possible (exponential), due to message delays.
 - Message complexity exponential in n.
 - Time complexity exponential in n, counting message pileups.
- Using (e.g.) Synchronizer A:
 - Behaves like Synchronous Bellman-Ford.
 - Avoids corrections due to message delays.
 - Still has corrections due to low-cost high-hop-count paths.
 - $O(n |E|)$ messages, $O(n d)$ time
 - Big improvement.
Further work

• To read more:
 – See Awerbuch’s extensive work on
 • Applications of synchronizers.
 • Distributed algorithms for clustered networks.
 – Also work by Peleg

• Q: This work used a strategy of purposely slowing down portions of a system in order to improve overall performance. In which situations is this strategy a win?
Lower Bound on Time for Synchronization
Lower bound on time

- A, B, Γ emulate synchronous algorithms only in a local sense:
 - Looks the same to individual users,
 - Not to the combination of all users---can reorder events at different users.
- Good enough for many applications (e.g., data management).
- Not for others (e.g., embedded systems).

- Now show that global synchronization is inherently more costly than local synchronization, in terms of time complexity.
- Approach:
 - Define a particular global synchronization problem, the k-Session Problem.
 - Show this problem has a fast synchronous algorithm, that is, a fast algorithm using GlobSynch.
 - Time $O(kd)$, assuming GlobSynch takes steps ASAP.
 - Prove that all asynchronous distributed algorithms for this problem are slow.
 - Time $\Omega(k \text{diam } d)$.
 - Implies GlobSynch has no fast distributed implementation.
- Contrast:
 - A, SimpleSynch are fast distributed implementations of LocSynch.
k-Session Problem

• **Session:**
 – Any sequence of flash events containing at least one flash_i event for each location i.

• **k-Session problem:**
 – Perform at least k separate sessions (in every fair execution), and eventually halt.

• **Original motivation:**
 – Synchronization needed to perform parallel matrix computations that require enough interleaving of process steps, but tolerate extra steps.
Example: Boolean matrix computation

• \(n = m^3 \) processes compute the transitive closure of \(m \times m \) Boolean matrix \(M \).
• \(p_{i,j,k} \) repeatedly does:
 – read \(M(i,k) \), read \(M(k,j) \)
 – If both are 1 then write 1 in \(M(i,j) \)
• Each flash \(i,j,k \) in abstract session problem represents a chance for \(p_{i,j,k} \) to read or write a matrix entry.
• With enough interleaving (\(O(\log n) \) sessions), this is guaranteed to compute transitive closure.
Synchronous solution

• Fast algorithm using GlobSynch:
 – Just flash once at every round.
 – k sessions done in time $O(kd)$, assuming GlobSynch takes steps ASAP.
Asynchronous lower bound

- Consider distributed algorithm A that solves the k-session problem.
- Consists of process automata and FIFO send/receive channel automata.

- Assume:
 - d = upper bound on time to deliver any message (don’t count pileups)
 - l = local processing time, $l << d$

- Define time measure $T(A)$:
 - Timed execution α: Fair execution with times labeling events, subject to upper bound of d on message delay, l for local processing.
 - $T(\alpha) =$ time of last flash in α
 - $T(A) =$ supremum, over all timed executions α, of $T(\alpha)$.

\[\text{flash}_1 \quad \text{flash}_2 \quad \text{flash}_n \]
Lower bound

• **Theorem 2**: If A solves the k-session problem then $T(A) \geq (k-1) \text{diam } d$.
• Factor of diam worse than the synchronous algorithm.

• **Definition**: Slow timed execution: All message deliveries take exactly the upper bound time d.

• **Proof**: By contradiction.
 – Suppose $T(A) < (k-1) \text{diam } d$.
 – Fix α, any slow timed execution of A.
 – α contains at least k sessions.
 – α contains no flash event at a time $\geq (k-1) \text{diam } d$.
 – So we can decompose $\alpha = \alpha_1 \alpha_2 \ldots \alpha_{k-1} \alpha''$, where:

 • Time of last event in α' is $< (k-1) \text{diam } d$.
 • No flash events occur in α''.
 • Difference between the times of the first and last events in each α_r is $< \text{diam } d$.

Lower bound, cont’d

• Now reorder events in α, while preserving dependencies:
 – Events of same process.
 – Send and corresponding receive.
• Reordered execution will have < k sessions, a contradiction.
• Fix processes, j_0 and j_1, with $\text{dist}(j_0, j_1) = \text{diam}$ (maximum distance apart).
• Reorder within each α_r separately:
 – For α_1: Reorder to $\beta_1 = \gamma_1 \delta_1$, where:
 • γ_1 contains no event of j_0, and
 • δ_1 contains no event of j_1.
 – For α_2: Reorder to $\beta_2 = \gamma_2 \delta_2$, where:
 • γ_1 contains no event of j_1, and
 • δ_1 contains no event of j_0.
 – And alternate thereafter.
Lower bound, cont’d

• If the reordering yields a fair execution of A (can ignore timing), then we get a contradiction, because it contains $\leq k-1$ sessions:
 – No session entirely within γ_1, (no event of j_0).
 – No session entirely within $\delta_1 \gamma_2$ (no event of j_1).
 – No session entirely within $\delta_2 \gamma_3$ (no event of j_0).
 – ...
 – Thus, every session must span some $\gamma_r - \delta_r$ boundary.
 – But, there are only $k-1$ such boundaries.

• So, it remains only to construct the reordering.
Constructing the reordering

- WLOG, consider α_r for r odd.
- Need $\beta_r = \gamma_r \delta_r$, where γ_r contains no event of j_0, δ_r no event of j_1.
- If α_r contains no event of j_0 then don’t reorder, just define $\gamma_r = \alpha_r$, $\delta_r = \lambda$.
- Similarly if α_r contains no event of j_1.
- So assume α_r contains at least one event of each.
- Let π be the first event of j_0, φ the last event of j_1 in α_r.

Claim: φ does not depend on π.
Why: Insufficient time for messages to travel from j_0 to j_1:
 - Execution α is slow (message deliveries take time d).
 - Time between π and φ is $< \text{diam } d$.
 - j_0 and j_1 are diam apart.

Then, we can reorder α_r to β_r, in which π comes after φ.
Consequently, in β_r, all events of j_1 precede all events of j_0.
Define γ_r to be the part ending with φ, δ_r the rest.
Next time…

• Time, clocks, and the ordering of events in a distributed system.
• State-machine simulation.
• Vector timestamps.
• Reading:
 – Chapter 18
 – [Lamport time, clocks…paper]
 – [Mattern paper]