6.852: Distributed Algorithms
Fall, 2009

Class 13
Today’s plan

• Asynchronous shared-memory systems
• The mutual exclusion problem
• Dijkstra’s algorithm
• Peterson’s algorithms
• Lamport’s Bakery algorithm
• Reading: Chapter 9, 10.1-10.5, 10.7
• Next: Sections 10.6-10.8
Asynchronous Shared-Memory Systems
Asynchronous Shared-Memory systems

- We’ve covered basics of non-fault-tolerant asynchronous network algorithms:
 - How to model them.
 - Basic asynchronous network protocols—broadcast, spanning trees, leader election,…
 - Synchronizers (running synchronous algorithms in async networks)
 - Logical time
 - Global snapshots
- Now consider asynchronous shared-memory systems:

 - Processes, interacting via shared objects, possibly subject to some access constraints.
 - Shared objects are typed, e.g.:
 - Read/write (weak)
 - Read-modify-write, compare-and-swap (strong)
 - Queues, stacks, others (in between)
Asynch Shared-Memory systems

• Theory of ASM systems has much in common with theory of asynchronous networks:
 – Similar algorithms and impossibility results.
 – Even with failures.
 – Transformations from ASM model to asynch network model allow ASM algorithms to run in asynchronous networks.
 • “Distributed Shared Memory”.

• Historically, theory for ASM started first.

• Arose in study of early operating systems, in which several processes can run on a single processor, sharing memory, with possibly-arbitrary interleavings of steps.

• Currently, ASM models apply to multiprocessor shared-memory systems, in which processes can run on separate processors and share memory.
Topics

• Define the basic system model, without failures.
• Use it to study basic problems:
 – Mutual exclusion.
 – Other resource-allocation problems.
• Introduce process failures into the model.
• Use model with failures to study basic problems:
 – Distributed consensus
 – Implementing atomic objects:
 • Atomic snapshot objects
 • Atomic read/write registers
• Wait-free and fault-tolerant computability theory
• Modern shared-memory multiprocessors:
 – Practical issues
 – Algorithms
 – Transactional memory
Basic ASM Model, Version 1

• Processes + objects, modeled as automata.
• Arrows:
 – Represent invocations and responses for operations on the objects.
 – Modeled as input and output actions.
• Fine-granularity model, can describe:
 – Delay between invocation and response.
 – Concurrent (overlapping) operations:
 • Object could reorder.
 • Could allow them to run concurrently, interfering with each other.
• We’ll begin with a simpler, coarser model:
 – Object runs ops in invocation order, one at a time.
 – In fact, collapse each operation into a single step.
• Return to the finer model later.
Basic ASM Model, Version 2

- One big shared memory system automaton A.
- External actions at process “ports”.
- Each process i has:
 - A set states\(_i\) of states.
 - A subset start\(_i\) of start states.
- Each variable x has:
 - A set values\(_x\) of values it can take on.
 - A subset initial\(_x\) of initial values.
- Automaton A:
 - States: State for each process, a value for each variable.
 - Start: Start states, initial values.
 - Actions: Each action associated with one process, and some also with a single shared variable.
 - Input/output actions: At the external boundary.
 - Transitions: Correspond to local process steps and variable accesses.
 - Action enabling, which variable is accessed, depend only on process state.
 - Changes to variable and process state depend also on variable value.
 - Must respect the type of the variable.
 - Tasks: One or more per process (threads).
Basic ASM Model

• Execution of A:
 – By IOA fairness definition, each task gets infinitely many chances to take steps.
 – Model environment as a separate automaton, to express restrictions on environment behavior.

• Commonly-used variable types:
 – Read/write registers: Most basic primitive.
 • Allows access using separate read and write operations.
 – Read-modify-write: More powerful primitive:
 • Atomically, read variable, do local computation, write to variable.
 – Compare-and-swap, fetch-and-add, queues, stacks, etc.

• Different computability and complexity results hold for different variable types.
The Mutual Exclusion Problem

- Share one resource among n user processes, \(U_1, U_2, \ldots, U_n \).
 - E.g., printer, portion of a database.
- \(U_i \) has four “regions”.
 - Subsets of its states, described by portions of its code.
 - C critical; R remainder; T trying; E exit

Protocols for obtaining and relinquishing the resource

- Cycle: \(R \rightarrow T \rightarrow C \rightarrow E \)
- Architecture:
 - \(U_i \)s and A are IOAs, compose.
The Mutual Exclusion Problem

- Actions at user interface:
 - $\text{try}_i, \text{crit}_i, \text{exit}_i, \text{rem}_i$
 - U_i interacts with p_i
- Correctness conditions:
 - **Well-formedness (Safety property):**
 - System obeys cyclic discipline.
 - E.g., doesn’t grant resource when it wasn’t requested.
 - **Mutual exclusion (Safety):**
 - System never grants to >1 user simultaneously.
 - Trace safety property.
 - Or, there’s no reachable system state in which >1 user is in C at once.
 - **Progress (Liveness):**
 - From any point in a fair execution:
 - If some user is in T and no user is in C then at some later point, some user enters C.
 - If some user is in E then at some later point, some user enters R.
The Mutual Exclusion Problem

• **Well-formedness (Safety):**
 – System obeys cyclic discipline.

• **Mutual exclusion (Safety):**
 – System never grants to > 1 user.

• **Progress (Liveness):**
 – From any point in a fair execution:
 • If some user is in T and no user is in C then at some later point, some user enters C.
 • If some user is in E then at some later point, some user enters R.

• **Conditions all constrain the system automaton A, not users.**
 – System determines if/when users enter C and R.
 – Users determine if/when users enter T and E.
 – We don’t state any requirements on the users, except that they preserve well-formedness.
The Mutual Exclusion Problem

- Well-formedness (Safety):
- Mutual exclusion (Safety):
- Progress (Liveness):
 - From any point in a fair execution:
 - If some user is in T and no user is in C then at some later point, some user enters C.
 - If some user is in E then at some later point, some user enters R.

- Fairness assumption:
 - Progress condition requires fairness assumption (all process tasks continue to get turns to take steps).
 - Needed to guarantee that some process enters C or R.
 - In general, in the asynchronous model, liveness properties require fairness assumptions.
 - Contrast: Well-formedness and mutual exclusion are safety properties, don’t depend on fairness.
One more assumption…

• No permanently active processes.
 – Locally-controlled actions can be enabled only when user is in T or E.
 – No always-awake, dedicated processes.
 – Motivation:
 • Multiprocessor settings, where users can run processes at any time, but are otherwise not involved in the protocol.
 • Avoid “wasting processors”.
Mutual Exclusion algorithm
[Dijkstra 65]

• Based on Dekker’s 2-process solution.
• Pseudocode, p. 265-266
 – Written in traditional sequential style, must somehow translate into more detailed state/transition description.
• Shared variables: Read/write registers.
 – turn, in \{1,2,\ldots,n\}, multi-writer multi-reader (mWmR), init anything.
 – for each process i:
 • flag(i), in \{0,1,2\}, single-writer multi-reader (1WmR), init 0
 • Written by i, read by everyone.
• Process i’s Stage 1:
 – Set flag := 1, test to see if turn = i.
 – If not, and turn’s current owner is seen to be inactive, then set turn := i.
 – Otherwise go back to testing…
 – When you see turn = i, move to Stage 2.
Dijkstra’s algorithm

• Stage 2:
 – Set $\text{flag}(i) := 2$.
 – Check (one at a time, any order) that no other process has $\text{flag} = 2$.
 – If check completes successfully, go to C.
 – If not, go back to beginning of Stage 1.

• Exit protocol:
 – Set $\text{flag}(i) := 0$.

• Problem with the sequential code style:
 – Unclear what constitutes an atomic step.
 • E.g., need three separate steps to test turn, test flag(turn), and set turn.
 – Must rewrite to make this clear:
 • E.g., precondition/effect code (p. 268-269)
 • E.g., sequential-style code with explicit reads and writes, one per line.
Dijkstra’s algorithm, pre/eff code

• One transition definition for each kind of atomic step.
• Explicit program counter, pc.
• E.g.: When pc is:
 – set-flag-1\(_i\): Sets flag to 1 and prepares to test turn.
 – test-turn\(_i\): Tests turn, and either moves to Stage 2 or prepares to test the current owner’s flag.
 – test-flag\(_j\): Tests j’s flag, and either goes on to set turn or goes back to test turn again.
 – ...
 – set-flag-2\(_i\): Sets flag to 2 and initializes set S, preparing to check all other processes’ flags.
 – check\(_j\): If flag\(_j\) = 2, go back to beginning.
 – ...

• S keeps track of which processes have been successfully checked in Stage 2.
Precondition/effect code

Shared variables:
\(\text{turn} \in \{1,\ldots,n\} \), initially arbitrary
for every \(i \):
\(\text{flag}(i) \in \{0,1,2\} \), initially 0

Actions of process \(i \):
Input: \(\text{try}_i, \text{exit}_i \)
Output: \(\text{crit}_i, \text{rem}_i \)
Internal: \(\text{set-flag-1}_i, \text{test-turn}_i, \text{test-flag}(j)_i, \text{set-turn}_i, \text{set-flag-2}_i, \text{check}(j)_i, \text{reset}_i \)
Precondition/effect code,
Dijkstra process i

try$_i$:
Eff: $pc := \text{set-flag-1}$

set-flag-1$_i$:
Pre: $pc = \text{set-flag-1}$
Eff: $\text{flag}(i) := 1$

 $pc := \text{test-turn}$

test-turn$_i$:
Pre: $pc = \text{test-turn}$
Eff: if $\text{turn} = i$ then $pc := \text{set-flag-2}$
else $pc := \text{test-flag}(\text{turn})$

set-turn$_i$:
Pre: $pc = \text{set-turn}$
Eff: $\text{turn} := i$

 $pc := \text{set-flag-2}$

set-flag-2$_i$:
Pre: $pc = \text{set-flag-2}$
Eff: $\text{flag}(i) := 2$

 $S := \{i\}$
 $pc := \text{check}$
More precondition/effect code, Dijkstra process i

check*(j)***
Pre: pc = check
 j \notin S
Eff: if flag(j) = 2 then
 S := ∅
 pc := set-flag-1
else
 S := S \cup \{j\}
 if |S| = n then pc := leave-try

exiti
Eff: pc := reset

reseti
Pre: pc = reset
Eff: flag(i) := 0
 S := ∅
 pc := leave-exit

remi
Pre: pc = leave-exit
Eff: pc := rem
Note on code style

- Explicit pc makes atomicity clear, but looks somewhat verbose/awkward.
- pc is often needed in invariants.
- Alternatively: Use sequential style, with explicit reads or writes (or other operations), one per line.
- Need line numbers:
 - Play same role as pc.
 - Used in invariants: “If process i is at line 7 then…”
Correctness

- **Well-formedness:** Obvious.
- **Mutual exclusion:**
 - Based on event order in executions, rather than invariants.
 - By contradiction: Assume U_i, U_j are ever in C at the same time.
 - Both must set-flag-2 before entering C; consider the last time they do this.
 - WLOG, suppose set-flag-2$_i$ comes first.
 - Then $\text{flag}(i) = 2$ from that point onward (until they are both in C).
 - However, j must see $\text{flag}(i) \neq 2$, in order to enter C.
 - Impossible.
Progress

• Interesting case: Trying region.
• Proof by contradiction:
 – Suppose α is a fair execution, reaches a point where some process is in T, no process is in C, and thereafter, no process ever enters C.
 – Now start removing complications…
 – Eventually, all regions changes stop and all in T keep their flags ≥ 1.
 – Then it must be that everyone is in T and R, and all in T have flag ≥ 1.

\[
\alpha \quad \longrightarrow \\
\underline{\alpha_1} \quad \longrightarrow \quad \text{No region changes, everyone in T or R, all in T have flag } \geq 1.
\]
• Then whenever turn is reset in α_1, it must be set to a contender’s index.

• **Claim:** In α_1, turn eventually acquires a contender’s index.

• **Proof:**
 – Suppose not---stays non-contender forever.
 – Consider any contender i.
 – If it ever reaches test-turn, then it will set turn := i, since it sees an inactive process.
 – Why must process i reach test-turn?
 • It’s either that, or it succeeds in reaching C.
 • But we have assumed no one reaches C.
 – Contradiction.
Progress, cont’d

• In α_1, once turn = contender’s index, it is thereafter always = some contender’s index.
 – Because contenders are the only processes that can change turn.

• May change several times.

• Eventually, turn stops changing (because tests come out negative), stabilizes to some value, say i.

\[\alpha \]

\[\alpha_1 \]

No region changes, everyone in T or R, all in T have flag ≥ 1.

\[\alpha_2 \]

\[\text{turn remains} = i \]

• Thereafter, all contenders $\neq i$ wind up looping in Stage 1.
 – If j reaches Stage 2, it returns to Stage 1, since it doesn’t go to C.
 – But then j’s tests always fail, so j stays in Stage 1.

• But then nothing stops process i from entering C.
Mutual exclusion, Proof 2

- Use invariants.
- Must show they hold after any number of steps.
- Main goal invariant: $|\{i : pc_i = \text{crit} \}| \leq 1$.

- To prove by induction, need more:
 1. If $pc_i = \text{crit}$ (or leave-try or reset) then $|S_i| = n$.
 2. There do not exist $i, j, i \neq j$, with i in S_j and j in S_i.
- 1 and 2 easily imply mutual exclusion.

- Proof of 1: Easy induction
- Proof of 2:
 - Needs some easy auxiliary invariants saying what S-values go with what flag values and what pc values.
 - Key step: When j gets added to S_i, by check(j)$_i$ event.
 - Then must have flag(j) $\neq 2$.
 - But then $S_j = \emptyset$ (by auxiliary invariant), so $i \notin S_j$, can’t break invariant.
Running Time

- Upper bound on time from when some process is in T until some process is in C.
- Assume upper bound of l on successive turns for each process task (here, all steps of each process are in one task).
- Time upper bound for [Dijkstra]: $O(l \cdot n)$.
- Proof: LTTR
Adding fairness guarantees

[Peterson]

- Dijkstra algorithm does not guarantee fairness in granting the resource to different users.
- Might not be important in practice, if contention is rare.
- Other algorithms add fairness guarantees.
- E.g., [Peterson]: a collection of algorithms guaranteeing lockout-freedom.
- **Lockout-freedom:** In any (low-level) fair execution:
 - If all users always return the resource then any user that enters T eventually enters C.
 - Any user that enters E eventually enters R.
Peterson 2-process algorithm

• Shared variables:
 – **turn**, in \{0,1\}, 2W2R read/write register, initially arbitrary.
 – for each process \(i = 0,1\):
 • **flag(i)**, in \{0,1\}, 1W1R register, initially 0
 • Written by \(i\), read by \(1-i\).

• Process \(i\)'s trying protocol:
 – Sets **flag(i)** := 1, sets **turn** := \(i\).
 – Waits for either **flag(1-i)** = 0 or **turn** \(\neq\ i\).
 – Toggles between the two tests.

• Exit protocol:
 – Sets **flag(i)** := 0
Precondition/effect code

Shared variables:

\[\text{turn} \in \{0,1\}, \text{initially arbitrary} \]

for every \(i \in \{0,1\} \):

\[\text{flag}(i) \in \{0,1\}, \text{initially 0} \]

Actions of process \(i \):

Input: \(\text{try}_i, \text{exit}_i \)

Output: \(\text{crit}_i, \text{rem}_i \)

Internal: \(\text{set-flag}_i, \text{set-turn}_i, \text{check-flag}_i, \text{check-turn}_i, \text{reset}_i \)
Precondition/effect code, Peterson 2P, process i

try_i:
Eff: pc := set-flag

set-flag_i:
Pre: pc = set-flag
Eff: flag(i) := 1
 pc := set-turn

set-turn_i:
Pre: pc = set-turn
Eff: turn := i
 pc := check-flag

check-flag_i:
Pre: pc = check-flag
Eff: if flag(1-i) = 0 then pc := leave-try
 else pc := check-turn

check-turn_i:
Pre: pc = check-turn
Eff: if turn ≠ i then pc := leave-try
 else pc := check-flag
More precondition/effect code, Peterson 2P, process i

crit\textsubscript{i} :
Pre: \(pc = \text{leave-try} \)
Eff: \(pc := \text{crit} \)

exit\textsubscript{i}
Eff: \(pc := \text{reset} \)

reset\textsubscript{i} :
Pre: \(pc = \text{reset} \)
Eff: \(\text{flag}(i) := 0 \)
\(pc := \text{leave-exit} \)

rem\textsubscript{i} :
Pre: \(pc = \text{leave-exit} \)
Eff: \(pc := \text{rem} \)
Correctness: Mutual exclusion

- Key invariant:
 - If $pc_i \in \{\text{leave-try, crit, reset}\}$ (essentially in C), and
 - $pc_{1-i} \in \{\text{check-flag, check-turn, leave-try, crit, reset}\}$ (engaged in the competition or in C),
 - then $\text{turn} \neq i$.

- That is:
 - If i has won and $1-i$ is currently competing then turn is set favorably for i---which means it is set to $1-i$.

- Implies mutual exclusion: If both are in C then turn must be set both ways, contradiction.

- Proof of invariant: All cases of inductive step are easy.
 - E.g.: a successful check-turn$_i$, causing i to advance to leave-try.
 - This explicitly checks that $\text{turn} \neq i$, as needed.
Correctness: Progress

• By contradiction:
 – Suppose someone is in T, and no one is ever thereafter in C.
 – Then the execution eventually stabilizes so no new region changes occur.
 – After stabilization:
 • If exactly one process is in T, then it sees the other’s flag = 0 and enters C.
 • If both processes are in T, then turn is set favorably to one of them, and it enters C.
Correctness: Lockout-freedom

- Argue that neither process can enter C three times while the other stays in T, after setting its flag := 1.
- **Bounded bypass.**
- **Proof:** By contradiction.
 - Suppose process i is in T and has set flag := 1, and subsequently process (1-i) enters C three times.
 - In each of the second and third times through T, process (1-i) sets turn := 1-i but later sees turn = i.
 - That means process i must set turn := i at least twice during that time.
 - But process i sets turn := i only once during its one execution of T.
 - Contradiction.
- **Bounded bypass + progress imply lockout-freedom.**
Time complexity

• Time from when any particular process i enters T until it enters C: $c + O(l)$, where:
 – c is an upper bound on the time any user remains in the critical section, and
 – l is an upper bound on local process step time.

• Detailed proof: See book.

• Rough idea:
 – Either process i can enter immediately, or else it has to wait for $(1-i)$.
 – But in that case, it only has to wait for one critical-section time, since if $(1-i)$ reenters, it will set turn favorably for i.

Peterson n-process algorithms

- Extend 2-process algorithm for lockout-free mutual exclusion to n-process algorithm, in two ways:
 - Using linear sequence of competitions, or
 - Using binary tree of competitions.
Sequence of competitions

- Competitions 1,2,...,n-1.
- Competition k has one loser, up to n-k winners.
- Thus, only one can win in competition n-1, implying mutual exclusion.

Shared vars:
- For each competition k in {1,2,...,n-1}:
 - turn(k) in {1,2,...,n}, mWmR register, written and read by all, initially arbitrary.
- For i in {1,2,...,n}:
 - flag(i) in {0,1,2,...,n-1}, 1WmR register, written by i and read by all, initially 0.

Process i trying protocol:
- For each level k:
 - Set flag(i) := k, indicating i is competing at level k.
 - Set turn(k) := i.
 - Wait for either turn(k) ≠ i, or everyone else’s flag < k (check flags one at a time).

Exit protocol:
- Set flag(i) := 0
Correctness: Mutual exclusion

• Definition: Process i is a winner at level k if either:
 – \(\text{level}_i > k \), or
 – \(\text{level}_i = k \) and \(pc_i \in \{\text{leave-try, crit, reset}\} \).

• Definition: Process i is a competitor at level k if either:
 – Process i is a winner at level k, or
 – \(\text{level}_i = k \) and \(pc_i \in \{\text{check-flag, check-turn}\} \).

• Invariant 1: If process i is a winner at level k, and process \(j \neq i \) is a competitor at level k, then \(\text{turn}(k) \neq i \).

• Proof: By induction, similar to 2-process case.
 – Complication: More steps to consider.
 – Now have many flags, checked in many steps.
 – Need auxiliary invariants saying something about what is true in the middle of checking a set of flags.
Correctness: Mutual exclusion

- **Invariant 2:** For any \(k, 1 \leq k \leq n-1 \), there are at most \(n-k \) winners at level \(k \).

- **Proof:** By induction, on level number, for a particular reachable state (not induction on number of steps).
 - **Basis:** \(k = 1 \):
 - Suppose false, for contradiction.
 - Then all \(n \) processes are winners at level 1.
 - Then Invariant 1 implies that \(\text{turn}(1) \) is unequal to all indices, contradiction.
 - **Inductive step:** ...
Correctness: Mutual exclusion

- **Invariant 2:** For any k, $1 \leq k \leq n-1$, there are at most $n - k$ winners at level k.
- **Inductive step:** Assume for k, $1 \leq k \leq n-2$, show for $k+1$.
 - Suppose false, for contradiction.
 - Then more than $n - (k + 1)$ processes, that is, at least $n - k$ processes, are winners at level $k + 1$: $|\text{Win}_{k+1}| \geq n - k$.
 - Every level $k+1$ winner is also a level k winner: $\text{Win}_{k+1} \subseteq \text{Win}_k$.
 - By inductive hypothesis, $|\text{Win}_k| \leq n-k$.
 - So $\text{Win}_{k+1} = \text{Win}_k$, and $|\text{Win}_{k+1}| = |\text{Win}_k| = n - k$.
 - **Q:** What is the value of $\text{turn}(k+1)$?
 - Can’t be the index of any process in Win_{k+1}, by Invariant 1.
 - Must be the index of some competitor at level $k+1$ (Invariant, LTTR).
 - But every competitor at level $k+1$ is a winner at level k, so is in Win_k.
 - Contradiction, since $\text{Win}_{k+1} = \text{Win}_k$.
Progress, Lockout-freedom

• Lockout-freedom proof idea:
 – Let k be the highest level at which some process i gets stuck.
 – Then turn(k) must remain = i.
 – That means no one else ever reenters the competition at level k.
 – Eventually, winners from level k will finish, since k is the highest level at which anyone gets stuck.
 – Then all other flags will be < k, so i advances.

• Alternatively, prove lockout-freedom by showing a time bound for each process, from $\rightarrow T$ until $\rightarrow C$. (See book)
 – Define $T(0) = \text{maximum time from when a process } \rightarrow T \text{ until } \rightarrow C$.
 – Define $T(k)$, $1 \leq k \leq n-1 = \text{max time from when a process wins at level } k \text{ until } \rightarrow C$.
 – $T(n-1) \leq l$.
 – $T(k) \leq 2 \cdot T(k+1) + c + (3n+2) \cdot l$, by detailed analysis.
 – Solve recurrences, get exponential bound, good enough for showing lockout-freedom.
Peterson Tournament Algorithm

- Assume $n = 2^h$.
- Processes = leaves of binary tree of height h.
- Competitions = internal nodes, labeled by binary strings.
- Each process engages in $\log n$ competitions, following path up to root.
- Each process i has:
 - A unique competition x at each level k.
 - A unique role in x ($0 =$ left, $1 =$ right).
 - A set of potential opponents in x.

![Diagram](image)
Peterson Tournament Algorithm

- **Shared variables:**
 - For each process i, $\text{flag}(i)$ in $\{0, \ldots, h\}$, indicating level, initially 0
 - For each competition x, $\text{turn}(x)$, a Boolean, initially arbitrary.

- **Process i’s trying protocol:** For each level k:
 - Set $\text{flag}(i) := k$.
 - Set $\text{turn}(x) := b$, where:
 - x is i’s level k competition,
 - b is i’s “role”, 0 or 1
 - Wait for either:
 - $\text{turn}(x) =$ opposite role, or
 - all flags of potential opponents in x are $< k$.

- **Exit protocol:**
 - Set $\text{flag}(i) := 0$.

![Diagram of tournament structure]

- λ
- $\begin{array}{cccc}
 0 & 01 & 10 & 11 \\
 00 & 0 & 1 & 1 \\
 0 & 1 & 2 & 3 \\
 4 & 5 & 6 & 7 \\
\end{array}$
Correctness

• Mutual exclusion:
 – Similar to before.
 – Key invariant: At most one process from any particular subtree rooted at level k is currently a winner at level k.

• Time bound (from T until C): $(n-1) c + O(n^2 l)$
 – Implies progress, lockout-freedom.
 – Define: $T(0) = \max$ time from T until C.
 – $T(k), 1 \leq k \leq \log n = \max$ time from winning at level k until C.
 – $T(\log n) \leq l$.
 – $T(k) \leq 2T(k+1) + c + (2^{k+1} + 2^k + 7)l$ (see book).
 • Roughly: Might need to wait for a competitor to reach C, then finish C, then for yourself to reach C.
 – Solve recurrences.
Bounded Bypass?

• Peterson’s Tournament algorithm has a low time bound from $\rightarrow T$ until $\rightarrow C$:

 $$(n - 1) c + O(n^2 l)$$

• Implies lockout-freedom, progress.

• Q: Does it satisfy bounded bypass?
 • No! There’s no upper bound on the number of times one process could bypass another in the trying region. E.g.:
 – Process 0 enters, starts competing at level 1, then pauses.
 – Process 7 enters, quickly works its way to the top, enters C, leaves C.
 – Process 7 enters again…repeats any number of times.
 – All while process 0 is paused.

• No contradiction between small time bound and unbounded bypass.
 – Because of the way we’re modeling timing of asynchronous executions, using upper bound assumptions.
 – When processes go at very different speeds, we say that the slow processes are going at normal speed, faster processes are going very fast.
Lamport’s Bakery Algorithm

• Like taking tickets in a bakery.
• Nice features:
 – Uses only single-writer, multi-reader registers.
 – Extends to even weaker registers, in which operations have durations, and a read that overlaps a write receives an arbitrary response.
 – Guarantees lockout-freedom, in fact, almost-FIFO behavior.
• But:
 – Registers are unbounded size.
 – Algorithm can be simulated using bounded registers, but not easily (uses bounded concurrent timestamps).

• Shared variables:
 – For each process i:
 • choosing(i), a Boolean, written by i, read by all, initially 0
 • number(i), a natural number, written by i, read by all, initially 0
Bakery Algorithm

• First part, up to choosing(i) := 0 (the “Doorway”, D):
 – Process i chooses a number number greater than all the numbers it reads for the other processes; writes this in number(i).
 – While doing this, keeps choosing(i) = 1.
 – Two processes could choose the same number (unlike real bakery).
 – Break ties with process ids.

• Second part:
 – Wait to see that no others are choosing, and no one else has a smaller number.
 – That is, wait to see that your ticket is the smallest.
 – Never go back to the beginning of this part---just proceed step by step, waiting when necessary.
Shared variables:
for every $i \in \{1, \ldots, n\}$:
 - $\text{choosing}(i) \in \{0, 1\}$, initially 0, writable by i, readable by all $j \neq i$
 - $\text{number}(i)$, a natural number, initially 0, writable by i, readable by $j \neq i$.

\begin{verbatim}
try_i
 choosing(i) := 1
 number(i) := 1 + \max_{j \neq i} \text{number}(j)
 choosing(i) := 0
 for j \neq i do
 waitfor choosing(j) = 0
 waitfor number(j) = 0 or (number(i), i) < (number(j), j)
end

exit_i
number(i) := 0
rem_i
\end{verbatim}
Correctness: Mutual exclusion

• Key invariant: If process i is in C, and process j ≠ i is in \((T - D) \cup C\),

\[
\text{then (number}(i),i) < (\text{number}(j),j).
\]

• Proof:
 – Could prove by induction.
 – Instead, give argument based on events in executions.
 – This argument extends to weaker registers, with concurrent accesses.
Correctness: Mutual exclusion

- **Invariant:** If \(i \) is in \(C \), and \(j \neq i \) is in \((T - D) \cup C\), then \((\text{number}(i), i) < (\text{number}(j), j)\).

- **Proof:**
 - Consider a point where \(i \) is in \(C \) and \(j \neq i \) is in \((T - D) \cup C\).
 - Then before \(i \) entered \(C \), it must have read \(\text{choosing}(j) = 0 \), event \(\pi \).
 - **Case 1:** \(j \) sets \(\text{choosing}(j) := 1 \) (starts choosing) after \(\pi \).
 - Then \(\text{number}(i) \) is set before \(j \) starts choosing.
 - So \(j \) sees the “correct” \(\text{number}(i) \) and chooses something bigger.
 - That suffices.
 - **Case 2:** \(j \) sets \(\text{choosing}(j) := 0 \) (finishes choosing) before \(\pi \).
 - Then when \(i \) reads \(\text{number}(j) \) in its second waitfor loop, it gets the “correct” \(\text{number}(j) \).
 - Since \(i \) decides to enter \(C \), it must see \((\text{number}(i), i) < (\text{number}(j), j)\).
Correctness: Mutual exclusion

• **Invariant:** If i is in C, and j ≠ i is in \((T − D) \cup C\), then \((\text{number}(i),i) < (\text{number}(j),j)\).

• **Proof of mutual exclusion:**
 – Apply invariant both ways.
 – Contradictory requirements.
Liveness Conditions

• **Progress:**
 – By contradiction.
 – If not, eventually region changes stop, leaving everyone in T or R, and at least one process in T.
 – Everyone in T eventually finishes choosing.
 – Then nothing blocks the smallest (number, index) process from entering C.

• **Lockout-freedom:**
 – Consider any i that enters T
 – Eventually it finishes the doorway.
 – Thereafter, any newly-entering process picks a bigger number.
 – Progress implies that processes continue to enter C, as long as i is still in T.
 – In fact, this must happen infinitely many times!
 – But those with bigger numbers can’t get past i, contradiction.
FIFO Condition

• Not really FIFO (→T vs. →C), but almost:
 – FIFO after the doorway: if j leaves D before i →T, then j →C before i →C.
• But the “doorway” is an artifact of this algorithm, so this isn’t a meaningful way to evaluate the algorithm!
• Maybe say “there exists a doorway such that”…
• But then we could take D to be the entire trying region, making the property trivial.
• To make the property nontrivial:
 – Require D to be “wait-free”: a process is guaranteed to complete D it if it keeps taking steps, regardless of what any other processes do.
 – D in the Bakery Algorithm is wait-free.
• The algorithm is FIFO after a wait-free doorway.
Impact of Bakery Algorithm

• Originated important ideas:
 – Wait-freedom
 • Fundamental notion for theory of fault-tolerant asynchronous distributed algorithms.
 – Weakly coherent memories
 • Beginning of formal study: definitions, and some algorithmic strategies for coping with them.
Next time…

• More mutual exclusion algorithms:
 – Lamport’s Bakery Algorithm, cont’d
 – Burns’ algorithm
• Number of registers needed for mutual exclusion.
• Reading: Sections 10.6-10.8