6.852: Distributed Algorithms
Fall, 2009

Class 24
Today’s plan

• Self-stabilization
• Self-stabilizing algorithms:
 – Breadth-first spanning tree
 – Mutual exclusion
• Composing self-stabilizing algorithms
• Making non-self-stabilizing algorithms self-stabilizing
• Reading:
 – [Dolev, Chapter 2]
• Next time:
 – Partially synchronous distributed algorithms
 – Clock synchronization
 – Reading:
 • Chapters 23-25
 • [Attiya, Welch] Section 6.3, Chapter 13
Self-stabilization

• A useful fault-tolerance property for distributed algorithms.
• Algorithm can start in any state---arbitrarily corrupted.
• From there, if it runs normally (usually, without any further failures), it eventually gravitates back to correct behavior.

• [Dijkstra 73: Self-Stabilizing Systems in Spite of Distributed Control]
 – Dijkstra’s most important contribution to distributed computing theory.
 – [Lamport talk, PODC 83] Reintroduced the paper, explained its importance, popularized it.
 – Became (still is) a major research direction.
 – Award renamed the Dijkstra Prize.

• [Dolev book, 00] summarizes main ideas of the field.
Today…

• Basic ideas, from [Dolev, Chapter 2]

• Rest of the book describes:
 – Many more self-stabilizing algorithms.
 – General techniques for designing them.
 – Converting non-SS algorithms to SS algorithms.
 – Transformations between models, preserving SS.
 – SS in presence of ongoing failures.
 – Efficient SS.
 – Etc.
Self-Stabilization: Definitions
Self-stabilization

• [Dolev] considers:
 – Message-passing models, with FIFO reliable channels.
 – Shared-memory models, with read/write registers.
 – Asynchronous and synchronous models.

• To simplify, avoids internal process actions---combines these with sends, receives, or register access steps.

• Sometimes considers message losses ("loss" steps).

• Many models, must continually specify which is used.

• Defines executions:
 – Like ours, but needn’t start in initial state.
 – Same as our "execution fragments".

• Fair executions:
 – Described informally.
 – Our task-based definition is fine.
Legal execution fragments

- Given a distributed algorithm A, define a set L of legal execution fragments of A.
- L can include both safety and liveness conditions.
- **Example:** Mutual exclusion problem
 - L might be the set of all fragments α satisfying:
 - Mutual exclusion:
 - No two processes are in the critical region, in any state in α.
 - Progress:
 - If in some state of α, someone is in T and no one is in C, then sometime thereafter, someone \rightarrow C.
 - If in some state of α, someone is in E, then sometime thereafter, someone \rightarrow R.
Self-stabilization: Definition

- A global state s of algorithm A is safe with respect to legal set L, provided that every fair execution fragment of A that starts with s is in L.
- Algorithm A is self-stabilizing for legal set L if every fair execution fragment α of A contains a state s that is safe with respect to L.
 - Implies that the suffix of α starting with s is in L.
 - Also, any other fair execution fragment starting with s is in L.

- Weaker definition: Algorithm A is self-stabilizing for legal set L if every fair execution fragment α has a suffix in L.

\[
\begin{align*}
\text{\alpha} & \quad \text{s} \\
\text{In L}
\end{align*}
\]
Stronger vs. weaker definition of self-stabilization

- **Stronger definition:** Algorithm A is self-stabilizing for legal set L if every fair execution fragment of A contains a state s that is safe with respect to L.
- **Weaker definition:** Algorithm A is self-stabilizing for legal set L if every fair execution fragment has a suffix in L.

- [Dolev] generally uses the stronger definition; so will we.
- But occasionally, he appears to be using the weaker definition; we’ll warn when this arises.

- **Q:** Equivalent definitions? Not in general. LTTR.
Non-termination

• Self-stabilizing algorithms for nontrivial problems don’t terminate.

• E.g., consider message-passing algorithm A:
 – Suppose A is self-stabilizing for legal set L, and A has a terminating global state s.
 • All processes quiescent, all channels empty.
 – Consider a fair execution fragment α starting with s.
 – α contains no steps---just global state s.
 – Since A is self-stabilizing with respect to L, α must contain a safe state.
 – So s must be a safe state.
 – Then the suffix of α starting with s is in L; that is, just s itself is in L.
 – So L represents a trivial problem---doing nothing satisfies it.

• Similar argument for shared-memory algorithms.
Self-Stabilizing Algorithm 1: Self-Stabilizing Breadth-First Spanning Tree Construction
Breadth-first spanning tree

- Shared-memory model
- Connected, undirected graph $G = (V,E)$.
- Processes P_1, \ldots, P_n, P_1 a designated root.
- Permanent knowledge (built into all states of the processes):
 - P_1 always knows it’s the root.
 - Everyone always knows who their neighbors are.

- Neighboring processes in G share registers in both directions:
 - r_{ij} written by P_i, read by P_j.

- **Output:** A breadth-first spanning tree, recorded in the r_{ij} registers:
 - $r_{ij}.\text{parent} = 1$ if j is i’s parent, 0 otherwise.
 - $r_{ij}.\text{dist} = \text{distance from root to } i \text{ in the BFS tree} = \text{smallest number of hops on any path from 1 to } i \text{ in } G$.
 - Values in registers should remain constant from some point onward.
In terms of legal sets...

- Define execution fragment α to be legal if:
 - The registers have correct BFS output values, in all states in α.
 - Registers never change.

- $L = $ set of legal execution fragments.

- Safe state s:
 - Global state from which all extensions have registers with correct, unchanging BFS output values.

- SS definition says:
 - Any fair execution fragment α, starting from any state, contains some safe state s.
 - That is, one from which all extensions have registers with correct, unchanging BFS output values.
 - Implies that any fair execution fragment α has a suffix in which the register contents represent a fixed BFS tree.
BFS Algorithm strategy

• The system can start in any state, with
 – Any values (of the allowed types) in registers,
 – Any values in local process variables.
• Processes can’t assume that their own states and output registers are initially correct.

• Repeatedly recalculate states and outputs based on inputs from neighbors.
• In case of tie, use some default rule for selecting parent.

• Prove correctness, stabilization time, using induction on distance from root.
Root process P_1

do forever
 for every neighbor m do
 write $r_{1m} := (0,0)$

- Keep writing $(0,0)$ everywhere.
- Access registers in fixed, round-robin order.
Non-root process P_i

• Maintains local variables lr_{ji} to hold latest observed values of incoming registers r_{ji}.

• First loop:
 – Read all the r_{ji}, copy them into lr_{ji}.

• Use this local info to calculate new best distance dist, choose a parent that yields this distance.
 – Use default rule, e.g., smallest index, so always break ties the same way.
 – Needed to ensure stabilization to a fixed tree.

• Second loop:
 – Write dist to all outgoing registers.
 – Notify new parent.
Non-root process P_i

- do forever
 - for every neighbor m do
 - $lr_{mi} := \text{read}(r_{mi})$
 - $\text{dist} := \min\{lr_{mi}.\text{dist}\} + 1$
 - $\text{found} := \text{false}$
 - for every neighbor m do
 - if not found and $\text{dist} = lr_{mi}.\text{dist} + 1$ then
 - write $r_{im} := (1,\text{dist})$
 - $\text{found} := \text{true}$
 - else
 - write $r_{im} := (0,\text{dist})$

- Note:
 - P_i doesn’t take min of its own dist and neighbors’ dists.
 - Unlike non-SS relaxation algorithms.
 - Ignores its own dist, recalculates solely from neighbors’ dists.
 - Because its own value could be erroneous.
Correctness

- Prove this stabilizes to a particular “default” BFS tree.
- Define the default tree to be the unique BFS tree where ties in choosing parent are resolved using the rule:
 - Choose the smallest index yielding the shortest distance.
- Prove that, from any starting global state, the algorithm eventually reaches and retains the default BFS tree.
- More precisely, show it reaches a safe state, from which any execution fragment retains the default BFS tree.

- Show this happens within bounded time: \(O(\text{diam} \ \Delta \ l) \), where
 - \(\text{diam} \) is diameter of \(G \) (max distance from \(P_1 \) to anyone is enough).
 - \(\Delta \) is maximum node degree
 - \(l \) is upper bound on local step time
 - The constant in the big-O is about 4.
Correctness

• Uses a lemma marking progress through distances 0, 1, 2,..., diam, as for basic AsynchBFS.

• **New complication:** Erroneous, too-small distance estimates.

• Define a **floating distance** in a global state to be a value of some $r_{ij}\cdot\text{dist}$ that is strictly less than the actual distance from P_1 to P_i.
 – Can’t be correct.

• **Lemma:** For every $k \geq 0$, within time $(4k+1)\Delta t$, we reach a configuration such that:
 1. For any i with $\text{dist}(P_1,P_i) \leq k$, every $r_{ij}\cdot\text{dist}$ is correct.
 2. There is no floating distance $< k$.

• Moreover, these properties persist after this configuration.
Proof of lemma

• Lemma: For every \(k \geq 0 \), within time \((4k+1)\Delta l\), we reach a configuration such that:
 1. For any \(i \) with \(\text{dist}(P_1, P_i) \leq k \), every \(r_{ij}.\text{dist} \) is correct.
 2. There is no floating distance \(< k \).

• Proof: Induction on \(k \).
 – \(k = 0 \): \(P_1 \) writes \((0,0)\) everywhere within time \(\Delta l \).
 – Assume for \(k \), prove for \(k+1 \):
 • Property 1:
 – Consider \(P_i \) at distance \(k+1 \) from \(P_1 \).
 – In one more interval of length \(4\Delta l \), \(P_i \) has a chance to update its local dist and outgoing register values.
 – By inductive hypothesis, these updates are based entirely on:
 » Correct distance values from nodes with distance \(\leq k \) from \(P_1 \), and
 » Possibly some floating values, but these must be \(\geq k \).
 – So \(P_i \) will calculate a correct distance value.
 • Property 2:
 – For anyone to calculate a floating distance \(< k+1 \), it must see a floating distance \(< k \).
 – Can’t, by inductive hypothesis.
Proof, cont’d

• We have proved:
 – **Lemma:** For every k \(\geq 0 \), within time \((4k+1)\Delta l\), we reach a configuration such that:
 1. For any \(i \) with \(\text{dist}(P_1,P_i) \leq k \), every \(r_{ij}.\text{dist} \) is correct.
 2. There is no floating distance \(< k\).

• So within time \((4 \text{ diam } +1)\Delta l\), all the \(r_{ij}.\text{dist} \) values become correct.

• Persistence is easy to show.

• Once all the \(r_{ij}.\text{dist} \) values are correct, everyone will use the default rule and always obtain the default BFS tree.

• Ongoing failures:
 – If arbitrary failures occur from time to time, not too frequently, the algorithm gravitates back to correct behavior in between failures.
 – Recovery time depends on size (diameter) of the network.
Self-Stabilizing Algorithm 2: Self-Stabilizing Mutual Exclusion
Self-stabilizing mutual exclusion

- [Dijkstra 73]
- Ring of processes, each with output variable x_i.
- Large granularity: In one atomic step, process P_i can read both neighbors’ variables, compute its next value, and write it to variable x_i.

P_1:
 do forever:
 if $x_1 = x_n$ then $x_1 := x_1 + 1 \mod (n+1)$

$P_i, i \neq 1$:
 do forever:
 if $x_i \neq x_{i-1}$ then $x_i := x_{i-1}$

- P_1 tries to make its variable one more than its predecessor’s (mod $n+1$).
- Each other process tries to make its variable equal to its predecessor’s

That’s $(n+1)$, not n.
Mutual exclusion

• In what sense does this “solve mutual exclusion”?
• Definition: “Pi is enabled” (or “Pi can change its state”) in a configuration, if the variables are set so Pi can take a step and change the value of its variable xi.

• Legal execution fragment α:
 – In any state in α, exactly one process is enabled.
 – For each i, α contains infinitely many states in which Pi is enabled.

• Use this to solve mutual exclusion:
 – Say Pi interacts with requesting user Ui.
 – Pi grants Ui the critical section when:
 • Ui has requested it, and
 • Pi is enabled.
 – When Ui returns the resource, Pi actually does its step, changing xi.
 – Guarantees mutual exclusion, progress.
 – Also lockout-freedom.
Lemma 1

- **Legal α:**
 - In any state in α, exactly one process is enabled.
 - For each i, α contains infinitely many states in which P_i is enabled.

- **Lemma 1:** A configuration in which all the x variables have the same value is safe.
- This means that, from such a configuration, any fair execution fragment is legal.
- **Proof:** Only P_1 can change its state, then P_2, then P_3, ..., and so on around the ring (forever).

- Remains to show: Starting from any state, the algorithm eventually reaches a configuration in which all the x values are the same.
- This uses some more lemmas.
Lemma 2

- **Lemma 2:** In every configuration, at least one of the potential x values, \{0,\ldots,n\}, does not appear in any \(x_i\).
- **Proof:** Obviously. There are \(n+1\) values and only \(n\) variables.
Lemma 3

- **Lemma 3**: In any fair execution fragment (from any configuration c), P_1 changes x_1 at least once every nl time.

- **Proof**:
 - Assume not---P_1 goes longer than nl without changing x_1 from some value v.
 - Then by time l, P_2 sets x_2 to v,
 - By time $2l$, P_3 sets x_3 to v,
 - ...
 - By $(n-1)l$, P_n sets x_n to v.
 - All these values remain $= v$, as long as x_1 doesn’t change.
 - But then by time nl, P_1 sees $x_n = x_1 = v$, and increments x_1.
Lemma 4

• **Lemma 4:** In any fair execution fragment α, a configuration in which all the x values are the same (and so, a safe configuration) occurs within time $(n^2 + n)l$.

• **Proof:**
 – Let $c =$ initial configuration of α.
 – Let $v =$ some value that doesn’t appear in any x_i, in c.
 – Then v doesn’t appear anywhere, in α, unless/until P_1 sets $x_1 := v$.
 – Within time nl, P_1 changes x_1, incrementing it by 1, mod $(n+1)$.
 – Within another nl, P_1 increments x_1 again.
 – …
 – Within n^2l, P_1 increments x_1 to v.
 – At that point, there are still no other v’s anywhere else.
 – Then this v propagates all the way around the ring.
 – P_1 doesn’t change x_1 until v reaches x_n.
 – Yields all $x_i = v$, within time $(n^2 + n)l$.

Putting the pieces together

• Legal execution fragment α:
 – In any state in α, exactly one process is enabled.
 – For each i, α contains infinitely many states in which P_i is enabled.

• $L = \text{set of legal fragments}$.

• Theorem: Dijkstra’s algorithm is self-stabilizing with respect to legal set L.
 • In the sense of reaching a safe state.

• Remark:
 – This uses $n+1$ values for the x_i variables.
 – A curiosity:
 • This also works with n values, or even $n-1$.
 • But not with $n-2$ [Dolev, p. 20].
Reducing the atomicity

- Dijkstra’s algorithm reads x_{i-1}, computes, and writes x_i, all atomically.
- Now adapt this for usual model, in which only individual read/write steps are atomic.

- Consider Dijkstra’s algorithm on a 2n-process ring, with processes Q_j, variables y_j, $j = 1, 2, \ldots, 2n$.
 - Needs $2n+1$ values for the variables.

- Emulate this in the usual n-process ring, with processes P_i, variables x_i:
 - P_i emulates both Q_{2i-1} and Q_{2i}.
 - y_{2i-1} is a local variable of P_i.
 - y_{2i} corresponds to x_i.
Reducing the atomicity

- Consider Dijkstra’s algorithm on a 2n-process ring, with processes Q_j, variables y_j. $j = 1, 2, \ldots, 2n$.
- Emulate this in an n-process ring, with processes P_i, variables x_i.
 - P_i emulates both Q_{2i-1} and Q_{2i}.
 - y_{2i-1} is a local variable of P_i.
 - y_{2i} corresponds to x_i.

To emulate a step of Q_{2i-1}, P_i reads from x_{i-1}, writes to its local variable y_{2i-1}.
To emulate a step of Q_{2i}, P_i reads from its local variable y_{2i-1}, writes to x_i.
Since in each case one variable is internal, can emulate each step with just one ordinary read or write to shared memory.
Composing Self-Stabilizing Algorithms
Composing self-stabilizing algorithms

• Consider several algorithms, where
 – A_1 is self-stabilizing for legal set L_1,
 – A_2 is SS for legal set L_2, “assuming A_1 stabilizes for L_1”
 – A_3 is SS for legal set L_3, “assuming A_1 stabilizes for L_1 and A_2 stabilizes for L_2”
 – etc.

• Then we should be able to run all the algorithms together, and the combination should be self-stabilizing for $L_1 \cap L_2 \cap L_3 \cap \ldots$

• Need composition theorems.
• Details depend on which model we consider.
• E.g., consider two shared memory algorithms, A_1 and A_2.
Composing SS algorithms

• Consider read/write shared memory algorithms, A_1 and A_2, where:
 – All of A_1’s shared registers are written only by A_1 processes.
 • No inputs arrive in A_1’s registers.
 – All of A_2’s shared registers are written only by A_1 and A_2 processes.
 • No other inputs arrive in A_2’s registers.
 – Registers shared between A_1 and A_2 are written only by A_1 processes, not by A_2 processes.
 – One-way information flow, from A_1 and A_2.
 – A_1 makes sense in isolation, but A_2 depends on A_1 for some inputs.

• Definition: A_2 is self-stabilizing for L_2 with respect to A_1 and L_1 provided that: If α is any fair execution fragment of the combination of A_1 and A_2 whose projection on A_1 is in L_1, then α has a suffix in L_2.

• Theorem: If A_1 is SS for L_1 and A_2 is SS for L_2 with respect to A_1 and L_1, then the combination of A_1 and A_2 is SS for L_2.
Weaker definition of SS

- At this point, [Dolev] seems to be using the weaker definition for self-stabilization:
- Instead of:
 - Algorithm A is self-stabilizing for legal set L if every fair execution fragment α of A contains a state s that is safe with respect to L.
- Now using:
 - Algorithm A is self-stabilizing for legal set L if every fair execution fragment α has a suffix in L.
- So we’ll switch here.
Composing SS algorithms

- **Def:** A₂ is self-stabilizing for L₂ with respect to A₁ and L₁ provided that any fair execution fragment of the combination of A₁ and A₂ whose projection on A₁ is in L₁, has a suffix in L₂.

- **Theorem:** If A₁ is SS for L₁ and A₂ is SS for L₂ with respect to A₁ and L₁, then the combination of A₁ and A₂ is SS for L₂.

- **Proof:**
 - Let α be any fair exec fragment of the combination of A₁ and A₂.
 - We must show that α has a suffix in L₂ (weaker definition of SS).
 - Projection of α on A₁ is a fair execution fragment of A₁.
 - Since A₁ is SS for L₁, this projection has a suffix in L₁.
 - Therefore, α has a suffix α’ whose projection on A₁ is in L₁.
 - Since A₂ is self-stabilizing with respect to A₁, α’ has a suffix α” in L₂.
 - So α has a suffix in L₂, as needed.

- **Total stabilization time is the sum of the stabilization times of A₁ and A₂.**
Applying the composition theorem

- Theorem supports modular construction of SS algorithms.

- Example: SS mutual exclusion in an arbitrary rooted undirected graph
 - A_1:
 - Constructs rooted spanning tree, using the SS BFS algorithm.
 - The r_{ij} registers contain all the tree info (parent and distance).
 - A_2:
 - Takes A_1’s r_{ij} registers as input.
 - Solves mutual exclusion using a Dijkstra-like algorithm, which runs on the stable tree in the r_{ij} registers.
 - Q: But Dijkstra’s algorithm uses a ring---how can we run it on a tree?
 - A: Thread the ring through the nodes of the tree, e.g.:
Mutual exclusion in a rooted tree

• Use the read/write version of the Dijkstra ring algorithm, with local and shared variables.

• Each process P_i emulates several processes of Dijkstra algorithm.

• Bookkeeping needed, see [Dolev, p. 24-27].

• Initially, both the tree and the mutex algorithm behave badly.

• After a while ($O(\text{diam} \Delta I)$ time), the tree stabilizes (since the BFS algorithm is SS), but the mutex algorithm continues to behave badly.

• After another while ($O(n^2 I)$ time), the mutex algorithm also stabilizes (since it’s SS given that the tree is stable).

• Total time is the sum of the stabilization times of the two algorithms: $O(\text{diam} \Delta I) + O(n^2 I) = O(n^2 I)$.
Self-Stabilizing Emulations
Self-stabilizing emulations
[Dolev, Chapter 4]

• Design a SS algorithm A_2 to solve a problem L_2, using a model that is more powerful than the “real” one.

• Design an algorithm A_1 using the real model, that “stabilizes to emulate” the powerful model

• Combine A_1 and A_2 to get a SS algorithm for L_2 using the real model.
Self-stabilizing emulations

- **Example 1 [Dolev, Section 4.1]:** Centralized scheduler
 - Rooted undirected graph of processes.
 - Powerful model: Process can read several variables, change state, write several variables, all atomically.
 - Basic model: Just read/write steps.
 - Emulation algorithm A_1:
 - Uses Dijkstra-style mutex algorithm over BFS spanning tree algorithm
 - Process performs steps of A_2 only when it has the critical section (global lock).
 - Performs all steps that are performed atomically in the powerful model, before exiting the critical section.
 - Stabilizes to emulate the more powerful model.
 - Initially, both emulation A_1 and algorithm A_2 behave badly.
 - After a while, emulation begins behaving correctly, yielding mutual exclusion.
 - After another while, A_2 stabilizes for L_2.
Self-stabilizing emulations

• Example 2 [Nolte]: Virtual Node layer for mobile networks
 – Mobile ad hoc network: Collection of processes running on mobile nodes, communicating via local broadcast.
 – Powerful model: Also includes stationary Virtual Nodes at fixed geographical locations (e.g., grid points).
 – Basic model: Just the mobile nodes.
 – Emulation algorithm A_1:
 • Mobile nodes in the vicinity of a Virtual Node’s location cooperate to emulate the VN.
 • Uses Replicated State Machine strategy, coordinated by a leader.
 – Application algorithm A_2 running over the VN layer:
 • Geocast, or point-to-point routing, or motion coordination,…
 – Initially, both the emulation A_1 and the application algorithm A_2 behave badly.
 – Then the emulation begins behaving correctly, yielding a VN Layer.
 – Then the application stabilizes.
Making Non-Self-Stabilizing Algorithms Self-Stabilizing
Making non-self-stabilizing algorithms self-stabilizing

• [Dolev, Section 2.8]: Recomputation of floating outputs.
 – Method of converting some non-SS distributed algorithms to SS algorithms.

• What kinds of algorithms?
 – Algorithm A, computes a distributed function based on distributed inputs.
 – Assumes processes’ inputs are in special, individual input variables, \(I_i \),
 whose values never change (e.g., contain fixed information about local
 network topology).
 – Outputs placed in special, individual output variables \(O_i \).

• Main idea: Execute A repeatedly, from its initial state, with the fixed
 inputs, with two kinds of output variables:
 – Temporary output variables \(o_i \).
 – Floating output variables \(FO_i \).

• Use the temporary variables \(o_i \) the same way A uses \(O_i \).
• Write to the floating variables \(FO_i \) only at the end of function computation.
• When restarting A, reset all variables except the floating outputs \(FO_i \).
• Eventually, the floating outputs should stop changing.
Example: Consensus

- Start with a simple synchronous, non-fault-tolerant, non-self-stabilizing network consensus algorithm A, and make it self-stabilizing.
- Undirected graph $G = (V, E)$, known upper bound D on diameter.
- **Non-SS consensus algorithm A:**
 - Everyone starts with Boolean input in I_i.
 - After D rounds, everyone agrees, and decision value = 1 iff someone’s input = 1.
 - At intermediate rounds, process i keeps current consensus proposal in O_i.
 - At each round, send O_i to neighbors, resets O_i to “or” of its current value and received values.
 - Stop after D rounds.
- A works fine, in synchronous model, if it executes once, from initial states.
Example: Consensus

• To make this self-stabilizing:
 – Run algorithm A repeatedly, with the FO\textsubscript{i} as floating outputs.
 – While running A, use o\textsubscript{i} instead of O\textsubscript{i}.
 – Copy o\textsubscript{i} to FO\textsubscript{i} at the end of each execution of A.

• This is not quite right…
 – Assumes round numbers are synchronized.
 – Algorithm begins in an arbitrary global state, so round numbers can be off.
Example: Consensus

- Run algorithm A repeatedly, with the FO$_i$ as floating outputs.
- While running A, use o$_i$ instead of O$_i$.
- Copy o$_i$ to FO$_i$ at the end of each execution of A.

- Must also synchronize round numbers 1, 2, ..., D.
 - Needs a little subprotocol.
 - Each process, at each round, sets its round number to max of its own and all those of its neighbors.
 - When reach D, start over at 1.

- Eventually, rounds become synchronized throughout the network.

- Thereafter, the next full execution of A succeeds, produces correct outputs in the FO$_i$ variables.

- Thereafter, the FO$_i$ will never change.
Extensions

• Can make this into a fairly general transformation, for synchronous algorithms.

• Using synchronizers, can extend to some asynchronous algorithms.
Making non-SS algorithms SS: Monitoring and Resetting [Section 5.2]

- AKA Checking and Correction.
- Assumes message-passing model.
- Basic idea:
 - Continually monitor the consistency of the underlying algorithm.
 - Repair the algorithm when inconsistency is detected.
- For example:
 - Use SS leader election service to choose a leader (if there isn’t already a distinguished process).
 - Leader, repeatedly:
 - Conducts global snapshots,
 - Checks consistency,
 - Sends out corrections if necessary.
- Local monitoring and resetting [Varghese thesis, 92]
 - For some algorithms, can check and restore local consistency predicates.
 - E.g., BFS: Can check that local distance is one more than parent’s distance, recalculate dist and parent if not.
Other stuff in the book

• Discussion of practical motivations.
• Proof methods for showing SS.
• Stabilizing to an abstract specification.
• Model conversions, for SS algorithms:
 – Shared memory → message-passing
 – Synchronous → asynchronous
• SS in presence of ongoing failures.
 – Stopping, Byzantine, message loss.
• Efficient “local” SS algorithms.
• More examples.
Next time…

- Partially synchronous distributed algorithms
- Reading:
 - Chapters 23-25
 - [Attiya, Welch], Section 6.3, Chapter 13