VLSI lower bounds

Lemma. A network with bisection width B has area $\Omega(B^2)$.

\[
Pf. \quad B \leq W + 1 \implies A = LW \geq W^2 \geq (B - 1)^2 = \Omega(B^2)
\]

Good recursive bisection \implies small area

Bisection width lower bounds on computation

Shifting.

- **Input:** x_0, x_1, \ldots, x_n data
- $s \leq 0, \ldots, n-1$ control

- **Output:** y_0, y_1, \ldots, y_n-1 & $y_n = (x_0 - s) \mod n$

<table>
<thead>
<tr>
<th>Network</th>
<th>$S(n)$</th>
<th>$B(n)$</th>
<th>$A(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear array</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Tree</td>
<td>$O(n)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>\sqrt{n} mesh</td>
<td>$O(\sqrt{n})$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>n-input butterfly</td>
<td>$O(\log n)$</td>
<td>$G(n)$</td>
<td>$\Theta(n^2)$</td>
</tr>
</tbody>
</table>

Let $B(n) =$ # edges cut to bisection outputs

If $T(n) =$ worst-case #bits to cross this bisection, then $B(n)T(n) \geq I(n)$.

Ex:

- $S = 0 \implies 1$ bit crosses bisection ($L \to R$)
- $S = 3 \implies 3$ bits cross - worst case $\implies I = 3, T \geq B/I = 3/2$.

MIT LCS
How do we know 3 bits must cross? Might there be a clever encoding?

"Fooling argument"

Ex. Sup. we have following bisection:

\[
\begin{array}{c|c|c|c}
X_0 & Y_0 & X_{n/2} & Y_{n/2} \\
X_1 & Y_1 & \quad & \quad \\
\vdots & \vdots & \quad & \quad \\
X_{n/2-1} & Y_{n/2-1} & \quad & \quad \\
X_n & Y_n & \quad & \quad
\end{array}
\]

\[S = n/2 \Rightarrow \text{intuitively } n/2 \text{ bits must cross (L to R)}\]

Claim: \(B(n) \cdot T(n) \geq n/2 \)

PF. (fooling arg.) Sup. \(B(n) \cdot T(n) < n/2 \)

\# communication patterns on \(B(n) \) wires (L to R) over time \(T(n) = 2^{B(n)T(n)} < 2^{n/2} \)

\# values for \(x_0, \ldots, x_{n/2-1} = 2^{n/2} \)

\[\exists 2 \text{ distinct } x'_0, \ldots, x'_{n/2-1} \text{ and } x''_0, \ldots, x''_{n/2-1} \text{ that produce identical comm. patterns.}\]

RHS of circuit can't distinguish \(\Rightarrow \) produces same values for \(x_{n/2}, \ldots, x_n \) for both \(\Rightarrow \) must operate wrong for one, contradiction. \(\Box \)
Thm. For any bisection of outputs, $B(n) T(n) \geq n/2$.

Pf. Consider an arbitrary bisection.

Ex. $Y_0 \ x_0 \ | \ Y_1 \ x_3$
 $Y_2 \ x_1 \ | \ Y_3$
 $Y_4 \ x_2 \ | \ Y_5$
 $x_4

Make an $n \times n$ table:

	x_0	x_1	x_2	x_3	x_4	x_5
0	0	1	1	1	0	0
1	1	1	1	1	1	1
2	0	0	1	1	0	0
3	1	1	1	1	1	1
4	0	0	1	1	0	0
5	1	1	1	1	1	1

X if shift of s causes x_i to cross bisection.

Every column contains $n/2$ X's.

\[\text{Average } \# \text{ X's per row } \geq n/2, \]

\[\Rightarrow \text{some row contains } 2n/2 \text{ X's.} \]

(some shift causes $n/2$ bits to cross). \blacksquare

<table>
<thead>
<tr>
<th>Network</th>
<th>$B(n)$</th>
<th>$T(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear array</td>
<td>$\Theta(1)$</td>
<td>$n(n)$</td>
</tr>
<tr>
<td>Tree</td>
<td>$\Theta(1)$</td>
<td>$\Omega(n)$</td>
</tr>
<tr>
<td>$\sqrt{n} \times \sqrt{n}$ mesh</td>
<td>$\Theta(1)$</td>
<td>$\Omega(n)$</td>
</tr>
<tr>
<td>n-input butterfly</td>
<td>$\Theta(n)$</td>
<td>$\Omega(1)$</td>
</tr>
</tbody>
</table>
Theorem Any circuit for shifting \(n \) 6-bit inputs has \(A T^2 = \Omega(n^2) \).

Proof: \(A T^2 = \Omega(n^2) \).

Theorem Any circuit for multiplying two \(n \)-bit numbers has \(A T^2 = \Omega(n^2) \).

Proof: Let \(b \) take on powers of 2. Essentially correspond to shift problem.

\[C \leftarrow \overset{2n}{\ldots} \overset{\text{outputs}}{\text{c}} \overset{1}{\ldots} \]

\[A \leftarrow \overset{n}{\text{inputs}} \overset{1}{\ldots} \]

Consider bisection of outputs. Build shift/input matrix as before: \(n \times n/2 \)

\[
\begin{array}{cccc}
0 & a_1 & a_2 & \ldots & a_n \\
1 & x & x & x & \ldots \\
s & x & x & x & \ldots \\
n-1 & x & x & x & \ldots \\
\end{array}
\]

\(n/4 \) X's per column

\(n^2/8 \) X's in matrix

\(\Rightarrow \) some row has \(n/8 \) X's.

\[\therefore B \geq \Omega(n) \]

Also, FFT, convolution, sorting, routing, etc.

General Layout Strategy

Tree of meshes (not mesh of trees)

\[\text{TOM}(n) : \]

\[N = n^2 \lg n \]

\[n^2 \text{ leaves} \]

Area:

\[S(n) = 2 S(n/2) + n \]

\[= \Theta(n \lg^2 n) \]

\[A(n) = \Theta(n^2 \lg^2 n) \]
Fold and squash:

\[n^2 \times \log n \text{ layers} \Rightarrow \Theta(n^2 \log^2 n) \text{ area.} \]

\text{Truncated TOM: } \text{TOM}(n,k) - \text{top k levels}
\[\text{Area} = \Theta(n^2 k^2) \]

\text{Decomposition trees}

\(T \) is a \((w_1, w_2, \ldots, w_r)\) decomposition tree for \(G = (V, E) \):

1. Vertices in \(V \) mapped to leaves of \(T \).
2. Edges in \(E \) run through links of \(T \).
3. # edges leaving subtree rooted at depth \(i \) is \(\leq w_i \)

For \(1 \leq \alpha \leq 2 \), \(G \) has a \((w, \alpha)\) decomp tree if it has a \((w, w/\alpha, w/\alpha^2, \ldots, 0!0)\) decomp tree.

A decomp tree is balanced if all subgraphs at the same depth have same # vertices up to within 1.
Layout strategy

1. Start with \((w, \sqrt{2})\) decomp tree.
2. Balance the decomp tree.
3. Embed the balanced tree in trunc TCM.
4. Use trunc TCM layout to yield \(O(w^2 \log^2 n)\) area layout.

Balancing decomp trees

Warm-up: Necklace with black and white pearls.
How many cuts to divide into 2 sets, each with half the pearls of each color?

2 cuts suffice.
Continuity argument.

Lemma: Consider any 2 strings composed of an even # of black pearls and an even # of white pearls. By making at most 2 cuts, the pearls can be partitioned into 2 sets, each containing 2 strings such that each set has 1/2 the pearls of each color.

Pt. (Continuity arg.)
Lemma. Let T be a CBT drawn with n leaves on a straight line, and consider any set S of k consecutive leaves of T. Then, if a forest F of complete binary subtrees of T is

1. $S = \{\text{leaves of } F \}$
2. at most 2 trees of F have any given height.
3. depth of largest tree in F is $\leq \log k$

\[\text{Pf. } F \text{ be forest of maximal CBT's whose leaves lie only in } S. \text{ (1) and (3) follow. Use induction to prove (2).} \]

Theorem. Let G be a graph on n vertices that has a (w_1, w_2, \ldots, w_r) decomposable tree T. Then, G has a $(w'_1, w'_2, \ldots, w'_{r+1})$ balanced decomposable tree T', where

\[w'_i = 4 \sum_{k=i}^{r} w_k. \]

\[\text{Pf. Color leaves of } T: 1 \text{ = node of } G, 0 \text{ = empty.} \]

Recursively split $B \& W$ leaves evenly. Each stage has ≤ 2 strings of consecutive leaves from T, each of which has ≤ 2 CBT's of a given height.
Total # wires leaving a string ≤ sum of wires leaving each of its cbts.

\[w_i \leq \frac{4}{\alpha} \sum_{k=0}^{r} w_k. \]

Corollary A graph with a \((w, \alpha)\) decomp tree, \(\alpha\) const, has an \(O(w, \alpha)\) balanced decomp tree.

Proof Sum is geometric:

\[w'_i = \frac{4}{\alpha} \sum_{k=0}^{r} w_k \]

\[\leq \frac{4}{\alpha} \sum_{k=0}^{r} \frac{w}{\alpha^{k-1}} \]

\[\leq \frac{4w}{\alpha^{\alpha-1} (\alpha-1)} \]

Graph has \((4w\alpha/(\alpha-1), \alpha)\) decomp tree. □

Exam issues.