Many assigned readings are from the course textbooks:
E&R: Engel, T., and P. Reid. Physical Chemistry. San Francisco, CA: Benjamin Cummings, 2005. ISBN: 9780805338423. [Note: this is the single-volume edition.]
A&T: Allen, S. M., and E. L. Thomas. The Structure of Materials. New York, NY: J. Wiley & Sons, 1999. ISBN: 9780471000822.
Structure and Bonding | Thermodynamics | ||||
---|---|---|---|---|---|
Ses # | Topics | Readings | Topics | Readings | |
Orientation: Research and Careers in Materials Science and Engineering | |||||
L1 | Classical or Quantum: Electrons as Waves, Wave Mechanics | E&R: Read 12.1, 12.2, 12.4; Study 12.5, 13.2, 13.3 and problem P12.10; Review A.1 (complex numbers). | Fundamental Concepts |
E&R: 1.1 and 1.2
Supplementary Bent, The Second Law, pp. 1-5 |
|
L2 | Schrödinger’s Equation and Discrete Energy States of a Confined Electron |
E&R: Review 12.5, 13.2, and 13.3; Study 13.4 and 13.5.
Mortimer, R. G. “Principles of Quantum Mechanics: Classical Mechanics.” Section 14.1 in Physical Chemistry. 2nd ed. San Diego, CA: Elsevier, 2000. ISBN: 9780125083461. Dill, D. “Analytic solution of the Schrödinger equation: Particle in a box.” (PDF) Smith, D. Y. “Spin-Orbit Effects in the F and K Bands of Colored Alkali Halides.” Physical Review B 6, no. 2 (July 15, 1972): 565-581. |
Fundamental Concepts (cont.) | E&R: 1.4, 2.1, 2.2, and 2.3. | |
L3 | Free Electrons, Electrons in a Metal, and the Scanning Tunneling Microscope | E&R: Study 15.1 and 15.2; Read 14.1-14.4. | First Law of Thermodynamics | E&R: 2.5, 2.6, 2.7, 2.9, and 3.1. | |
L4 | Curiosity Killed the Cat: General Principles of Quantum Mechanics |
E&R: Study 15.3 (2-,3-dim box), 16.3 (?-electrons in conjugated molecules), and 16.5-6 (Scanning Tunnelling Microscope).
Supplementary Binning, G., and H. Rohrer. “Scanning tunneling microscopy - from birth to adolescence.” Reviews of Modern Physics 59, no. 3 (1987): 615-625. (1986 Nobel Lecture) |
Temperature, Heat, and Entropy | E&R: 1.3, 2.4, and 3.2. | |
L5 | The Hydrogen Atom | E&R: Study 14.1, 14.2, and 14.3; Read 14.4. | Heat Storage and Release in Phase Transitions | E&R: 2.8, 3.4, and 4.6. | |
L6 | The Hydrogen Atom (cont.) | E&R: Study 14.1, 14.2, and 14.3; Read 14.4, also read 22.6 (XPS and Auger) for 3.014 Week 1. | Examples of Work Important in Materials Science and Engineering: Polarization, Magnetic, Chemical |
Zemansky, M. W., and R. H. Dittman. “Work” In Heat and Thermodynamics. 7th Ed. Burr Ridge, IL: McGraw-Hill, 1996, pp. 49-68. ISBN: 9780070170599.
Callister, W. D., Jr. “Magnetic Properties.” In Fundamentals of Materials Science and Engineering. 2nd ed. New York, NY: John Wiley & Sons, 2004, pp. 730-744. ISBN: 9780471470144. |
|
Labs 1 | 3.014 Lab Week 1 | ||||
L7 | Alphabet Soup: The Periodic Table | E&R: Study 18.4, 18.5, and 20.1 to 20.5. | Thermal Properties of Materials; Fundamental Equations | E&R: 3.1 and 3.5. | |
L8 | The Periodic Table (cont.) | E&R: Study 21.5 and 21.6; Read: 17.2 (Stern-Gerlach). | Fundamental Equations (cont.); Equilibrium and the Second Law |
E&R: Chapters 5.1-5.8.
Supplementary Dill and Bromberg. “How to Design a Fundamental Equation.” In Molecular Driving Forces. New York, NY: Routledge, 2003, pp. 153-155. ISBN: 9780815320517. |
|
L9 | The Variational Principle; Application to Hydrogen Atom | E&R: Study 21.4, 23.1, 23.2, and 23.3. | Free Energy; Applying the Second Law in Laboratory Conditions | E&R: 6.1, 6.2, 6.3 (less important), and 6.4. | |
Exam 1 | |||||
L10 | Molecules from Atoms: Energy Minimization, Hybridization of Atomic Orbitals | E&R: Study 21.4 and 23.3; Read 23.4, 24.1, and 24.2. | Chemical Potentials and the Gibbs Free Energy | E&R: 6.4. | |
L11 | Bonding in Molecules: Hartree and Hartree-Fock Equations, Symmetries, Bond Order | E&R: Study 25.2, 25.4, 24.4, and 24.6. | Models of the Chemical Potential | E&R: 6.3, 6.4, 6.5, 9.1, 9.2, and 9.5. | |
L12 | Polymers Part 1: Diagonalization on a Basis, Huckel Model | E&R: Study 24.2, 24.4-6; Read math supplement A.7 and A.8, working with determinants and working with matrices. | Chemical Reaction Equilibria | E&R: 6.7- 6.9, 6.11, 6.12, and 9.11-9.13. | |
L13 | Quantum Oscillation | E&R: Study 25.7 (Huckel Model), 18.1 (Quantum Oscillator); Read 18.6 (Classical Harmonic Oscillator). | Electrochemical Equilibria |
E&R: 11.1-11.5, 11.8-11.9, and 11.11-11.13.
Supplementary E&R: 11.14-11.15. |
|
Labs 2 | 3.014 Lab Week 2 | ||||
L14 | Point Groups and Bravais Lattices | E&R: Study 25.7 (Huckel Model), 18.1 (Quantum Oscillator)Read 18.6 (Classical Harmonic Oscillator). | Batteries; Thermodynamic Stability |
E&R: 6.2 (Maxwell Relations).
Lupis, C. H. P. “Stability of one-component systems.” In Chemical Thermodynamics of Materials. Upper Saddle River, NJ: Prentice Hall, 1983, pp. 34-35. ISBN: 9780444007797. Callen, H. B. “Stability of Thermodynamic Systems.” In Thermodynamics and an Introduction to Thermostatistics. 2nd ed. New York, NY: John Wiley & Sons, 1985, pp. 202-212. ISBN: 9780471862567. |
|
L15 | Symmetry Operations | A&T: Study 3.1.1 - 3.1.4, 3.2.1, 3.2.4, and 3.2.5. | Phase Changes and Phase Diagrams of Single-Component Materials |
E&R: 8.1-8.5.
Wang, X., S. Scandolo, and R. Car. “Carbon Phase Diagrams from Ab Initio Molecular Dynamics.” Physical Review Letters 95 (October 28, 2005): 185701. |
|
L16 | Structure of Solids | A&T: Study 3.1.1-3.1.4 and 3.2.1; Read 3.2.4 and 3.2.5 (only Crystal Systems, Bravais Lattices, Unit Cells). | Single-Component Phase Diagrams (cont.); Thermodynamics of Solutions |
Gaskell. “The free energy of solution.” Chapter 11.5 in Introduction to Metallurgical Thermodynamics. pp. 328-338
E&R: 9.6 and 9.7. |
|
L17 | X-ray Diffraction | A&T: Study 3.2.2 up to p. 140, and 3.4. | Free Energy of Multi-phase Solutions at Equilibrium | E&R: 9.6 and 9.7. | |
L18 | X-rays at Work: Laue Condition, Ewald Construction, Bragg’s Law, Powder Diffraction | Read: Notes by Prof. B. Wuensch (PDF - 4.3 MB) (Courtesy of Prof. Wuensch. Used with permission.) | Binary Phase Diagrams: Miscibility Gaps and Eutectics | Lupis. “Binary Phase Diagrams.” Chapter VII in Chemical Thermodynamics of Materials. pp. 204-219 | |
Exam 2 | |||||
Labs 3 | 3.014 Lab Week 3 | ||||
L19 | From Diffraction to Structure |
X-Ray Diffraction Theory (ChE 386K) This University of Texas-Austin course Web site by Steve Swinnea at has many details (from Lec #19 on, note different 2? convention). |
Binary Phase Diagrams (cont.) | Callister, W. D., Jr. “Phase Diagrams.” Chapter 10S in Fundamentals of Materials Science and Engineering. pp. S67-S84. | |
L20 | Symmetries and Tensors |
A&T: Study 3.3 (Symmetry Constraints) Read all of Chapter 1. |
Spinodals and Binodals; Continuous Phase Transitions; Introduction to Statistical Mechanics |
E&R: 13.1 and 13.2.
Supplementary Zallen. “The Glass Transition.” Chapter 1.4 in The Physics of Amorphous Solids. pp. 16-23. Review E&R Chapter 12 -Basic Probability Concepts. |
|
L21 | Non-crystalline Materials |
A&T: Study 3.3 (Symmetry Constraints) Read all of Chapter 1. |
Connecting Events at the Atomic/Molecular Level to Macroscopic Thermodynamic Behavior: Two Postulates of Statistical Mechanics; Microscopic Definition of Entropy | E&R: 31.1-31.4. | |
L22 | Polymers Part 2 | A&T: Study 2.1-2.3.1. | Connecting Events at the Atomic/Molecular Level to Macroscopic Thermodynamic Behavior (cont.): The Boltzman Factor and Partition Function; Thermal Behavior of the Einstein Solid |
E&R: 31.5, 32.1-31.2, 33.1-33.3.
Supplementary E&R: 33.4-33.5. |
|
L23 | Glasses | A&T: Study 2.1-2.4.3. | Lattice Models of Materials; Modeling Polymer Solutions |
E&R: 32.3-32.4.
Dill and Bromberg. Chapter 15 “Solutions & Mixtures.” pp. 267-273, and Chapter 31 “Polymer Solutions.” pp. 593-605. Supplementary E&R: 32.5-32.9 (Details of Rotational, Vibrational, and Electronic Partition Functions for Simple Molecules). |
|
L24 | Liquid Crystals | A&T: Study 2.1-2.4 and 4.1-4.4.3. | Flory-Huggins Theory | Dill and Bromberg. “Polymer Solutions.” Chapter 31, pp. 593-605. | |
Labs 4 | 3.014 Lab Week 4 | ||||
Final Exam |