Lecture 21: The mean value inequality for uniformly elliptic operators part I

1 The mean value inequality: Iterative argument

In this lecture we will prove a mean value inequality for uniformly elliptic operators in divergence form. The argument is an iterative one due to De Georgi, Nash, and Moser. As usual we take \(L \) an operator with

\[Lu = \frac{\partial}{\partial x_i} A_{ij} \frac{\partial u}{\partial x_j} \] (1)

and \(\lambda |v|^2 \leq A_{ij} v_i v_j \leq \Lambda |v|^2 \) for all vectors \(v \). Let \(u \) be a function satisfying \(u \geq 0, Lu \geq 0 \). Take \(x_0 \) a point, and \(R \) a fixed positive number. Let \(\phi \) be a test function on \(B_R(x_0) \) which is zero on the boundary. Clearly

\[\int_{B_R(x_0)} \phi^2 u A \nabla u \cdot dS = 0 \] (2)

so, by Stokes’ theorem,

\[\int_{B_R(x_0)} \phi^2 u Lu + \int_{B_R(x_0)} A_{ij} \frac{\partial \phi^2 u}{\partial x_i} \frac{\partial u}{\partial x_j} = 0 \] (3)

and, since the first term is non-negative,

\[0 \geq \int_{B_R(x_0)} A_{ij} \frac{\partial \phi^2 u}{\partial x_i} \frac{\partial u}{\partial x_j}. \] (4)

We can simplify this a bit to get

\[0 \geq \int_{B_R(x_0)} A_{ij} \phi^2 \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} + 2 \int_{B_R(x_0)} A_{ij} \phi u \frac{\partial \phi}{\partial x_i} \frac{\partial u}{\partial x_j}. \] (5)

and

\[-2 \int_{B_R(x_0)} A_{ij} \phi u \frac{\partial \phi}{\partial x_i} \frac{\partial u}{\partial x_j} \geq \int_{B_R(x_0)} A_{ij} \phi^2 \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j}. \] (6)
Apply uniform ellipticity to the right hand side to get
\[\lambda \int_{B_R(x_0)} \phi^2 |\nabla u|^2 \leq -2 \int_{B_R(x_0)} A_{ij} \frac{\partial \phi}{\partial x_i} \frac{\partial u}{\partial x_j}. \]
(7)

Now work on the other term. At each point the matrix \(A \) defines a good metric, so Cauchy-Schwarz applies, and we get
\[-\phi u A_{ij} \frac{\partial \phi}{\partial x_i} \frac{\partial u}{\partial x_j} \leq \phi u (\nabla \phi \cdot A \nabla \phi)^{1/2} (\nabla u \cdot A \nabla u)^{1/2},\]
so
\[\lambda \int_{B_R(x_0)} \phi^2 |\nabla u|^2 \leq 2 \int_{B_R(x_0)} \phi u (\nabla \phi \cdot A \nabla \phi)^{1/2} (\nabla u \cdot A \nabla u)^{1/2}. \]
(8)

Use Cauchy-Schwarz again in the form \(\int fg \leq (\int f^2)^{1/2} (\int g^2)^{1/2} \) to get
\[\lambda \int_{B_R(x_0)} \phi^2 |\nabla u|^2 \leq 2 \left(\int_{B_R(x_0)} u^2 |\nabla \phi|^2 \right)^{1/2} \left(\int_{B_R(x_0)} \phi^2 |\nabla u|^2 \right)^{1/2}. \]
(9)

Uniform ellipticity then gives
\[\lambda \int_{B_R(x_0)} \phi^2 |\nabla u|^2 \leq 2 \Lambda \left(\int_{B_R(x_0)} u^2 |\nabla \phi|^2 \right)^{1/2} \left(\int_{B_R(x_0)} \phi^2 |\nabla u|^2 \right)^{1/2}, \]
(10)
so rearrange to get
\[\int_{B_R(x_0)} \phi^2 |\nabla u|^2 \leq \frac{4 \Lambda^2}{\lambda^2} \int_{B_R(x_0)} u^2 |\nabla \phi|^2. \]
(11)

This should be familiar, as we proved it on the way to the Cacciopoli inequality in lecture 6. We'll apply it slightly differently this time. Consider
\[\int_{B_R(x_0)} |\nabla (\phi u)|^2 = \int_{B_R(x_0)} |\phi \nabla u + u \nabla \phi|^2 \]
(12)
\[\leq 2 \int_{B_R(x_0)} \phi^2 |\nabla u|^2 + 2 \int_{B_R(x_0)} u^2 |\nabla \phi|^2. \]
(13)

Combining this with 11 we get
\[\int_{B_R(x_0)} |\nabla (\phi u)|^2 \leq k \int_{B_R(x_0)} u^2 |\nabla \phi|^2 \]
(14)
for a constant \(k = 2 + \frac{8 \Lambda^2}{\lambda^2} \). Now we need to use the Sobolev inequality. For simplicity we will assume that \(n \geq 3 \), but a similar result holds in the other cases.
Theorem 1.1 Let $\Omega \subset \mathbb{R}^n$ with $n \geq 3$, and let w be a function with compact support on Ω. Then

\[
\left(\int_{\Omega} |w|^{\frac{2n}{n-2}} \right)^{\frac{n-2}{n}} \leq c \int_{\Omega} |\nabla w|^2.
\]

(15)

We won’t prove this here. Apply it with $w = \phi u$ (this has compact support because ϕ does) to get

\[
\int_{B_R(x_0)} (\phi u)^{\frac{2n}{n-2}} \leq c \int_{B_R(x_0)} |\nabla (\phi u)|^2 \leq \tilde{c} \int_{B_R(x_0)} u^2 |\nabla \phi|^2.
\]

(16)

for some constant \tilde{c}.

Define $A_{r,k} = B_r(x_0) \cap \{ u > k \}$, and let $|A_{r,k}|$ be the volume of this set. For any function f define f_+ to be the positive part, i.e.

\[
f_+ = \sup(f, 0).
\]

(17)

Note that if u is L harmonic then u_+ is L harmonic almost everywhere, and claim without proof that everything we’ve done today goes through for the positive part of a harmonic function as well as for completely harmonic functions. Also pick $r < R$, and set

\[
\phi = \begin{cases}
1 & \text{on } B_r(x_0) \\
\frac{R - |x|}{R - r} & \text{on } B_R(x_0) \setminus B_r(x_0), \text{ and} \\
0 & \text{outside } B_R(x_0)
\end{cases}
\]

(18)

so that $|\nabla \phi| = \frac{1}{R - r}$ on $B_R(x_0)$, and 0 elsewhere. Note that if u is L-harmonic then $u - k$ is also L harmonic. Putting all this together we get

\[
\left(\int_{A_{r,k}} (u - k)_+^{\frac{2n}{n-2}} \right)^{\frac{n-2}{n}} \leq \left(\int_{B_R(x_0)} (\phi (u - k)_+)^{\frac{2n}{n-2}} \right)^{\frac{n-2}{n}}
\]

(19)

\[
\leq \tilde{c} \int_{B_R(x_0)} |\nabla \phi|^2 ((u - k)_+)^2
\]

(20)

\[
\leq \frac{\tilde{c}}{(R - r)^2} \int_{A_{r,k} \setminus B_r(x_0)} ((u - k)_+)^2.
\]

(21)

Now we’ll introduce another important inequality: the Holder Inequality.

Theorem 1.2 Let f, g be functions, and p, q real numbers satisfying $\frac{1}{p} + \frac{1}{q} = 1$. Then

\[
\int fg \leq \left(\int f^p \right)^{1/p} \left(\int g^q \right)^{1/q}.
\]

(22)
This is simply a generalisation of the Cauchy-Schwarz inequality, which is the case $p = q = 2$. Apply this with $p = \frac{n}{n-2}$, $q = \frac{n}{2}$ and any function f on any set Ω to get
\[\int_{\Omega} f^2 \leq \left(\int_{\Omega} \left(\frac{f}{\sqrt{n}} \right)^{2n-2} \right)^{\frac{n-2}{n}} |\Omega|^\frac{2}{n}. \] (23)

Set $f = (u - k)_+$ and $\Omega = A_{r,k}$ and we get
\[\int_{A_{r,k}} ((u - k)_+)^2 \leq \left(\int_{A_{r,k}} ((u - k)_+)^{2n-2} \right)^{\frac{n-2}{n}} |A_{r,k}|^\frac{2}{n} \] (24)
\[\leq \frac{\tilde{c}|A_{r,k}|^{\frac{2}{n}}}{(R-r)^2} \int_{A_{r,k} \setminus B_r(x_0)} ((u - k)_+)^2 \] (25)
\[\leq \frac{\tilde{c}|A_{r,k}|^{\frac{2}{n}}}{(R-r)^2} \int_{A_{r,k}} ((u - k)_+)^2. \] (26)

Note that if $h < k$ then $A_{r,k} \subset A_{r,h}$. Take $x \in A_{r,k}$, then $u(x) > k$, and $u(x) - h > k - h$. Therefore
\[\int_{A_{r,k}} ((u - h)_+)^2 \geq \int_{A_{r,k}} (k - h)^2 = (k - h)^2 |A_{r,k}| \] (27)
and
\[|A_{r,k}| \leq \frac{1}{(k - h)^2} \int_{A_{r,k}} ((u - h)_+)^2 \leq \frac{1}{(k - h)^2} \int_{A_{r,h}} ((u - h)_+)^2. \] (28)
for all $h < k$. Plugging this back into 26 we get
\[\int_{A_{r,k}} ((u - k)_+)^2 \leq \frac{\tilde{c}}{(R-r)^2(k - h)^4/n} \left(\int_{A_{r,h}} ((u - h)_+)^2 \right)^{2/n} \int_{A_{r,k}} ((u - k)_+)^2 \] (29)
\[\leq \frac{\tilde{c}}{(R-r)^2(k - h)^4/n} \left(\int_{A_{r,h}} ((u - h)_+)^2 \right)^{2/n} \int_{A_{r,h}} ((u - h)_+)^2 \] (30)
\[\leq \frac{\tilde{c}}{(R-r)^2(k - h)^4/n} \left(\int_{A_{r,h}} ((u - h)_+)^2 \right)^{(1+2/n)} \] (31)

Next lecture we will actually do the induction argument.