Gear geometry

Consider the curve generated by unwrapping a string from around a disk of radius \(R_B \). The end of the string will trace an involute curve.

To mathematically define an involute consider the following:

- \(R_c = \text{length_of_string_unwrapped} \)
- \(\tan(\phi) = \frac{R_c}{R_B} \)
- \(R_B = \text{radius_of_generating_cylinder} \)
- \(\phi = \text{pressure_angle} \)
- \(\theta = \text{position_parameter_associate_with_involute} \)
- \(E = \theta + \phi \)
- point at loose end of curve is at polar coordinates \(R, \theta \)
- \(E = \text{interim_variable_sum_of_angles} \)
- length of arc = radius * angle

\[
R_c = \frac{R_B \cos(\phi)}{\cos(\phi)} = \frac{R_B}{\cos(\phi)}
\]

\[
\theta = \tan(\phi) - \phi
\]

basic definition for angular coordinate of involute curve for any \(\phi \). Curve is generated by setting \(\phi \) to range from 0 to max

from geometry ...

\[
\cos(\phi) = \frac{R_B}{R} \Rightarrow R = \frac{R_B}{\cos(\phi)}
\]

the other coordinate, \(R = \text{pitch_radius} \) when \(\phi = \text{pressure_angle_for_design} \)

\[
\begin{align*}
\phi &= 40\text{deg} & \text{pressure_angle} \\
\theta_1 &= 0, 0.01.. 2\pi & \text{2_\pi_range_variable} \\
\theta &= \tan(\phi) - \phi & \text{involute}(\phi) \\
\phi_1 &= 0.877\text{deg} & \text{R_rad} = 0, 0.1.. 2 \\
R_B &= 1 & \text{in this case we will define the base radius} \\
& \\
\text{calculate the pitch radius} & \quad R_p = \frac{R_B}{\cos(\phi)} & \quad R_p = 1.305 \\
& \quad N.B. \text{ positive directions for } \theta \\
& \quad \text{and } \phi \text{ are opposite} \\
& \quad \text{the involute is constructed by varying a dummy pressure angle over a range - equivalent to unwrapping the string from the disk.} \\
& \quad \phi_1 = 0, 0.01.. \phi_1_\text{max} & \text{range_variable_for_construction} \\
& \quad \theta_2(\phi_1) = \tan(\phi_1) - \phi_1 & \quad R_2(\phi_1) = \frac{R_B}{\cos(\phi_1)} \\
& \quad \text{a tangent is drawn from the pressure angle thru the involute at the pitch radius (perpendicular to involute)} \\
& \quad R_{\text{tan}} := \begin{cases}
R_p & \frac{\pi}{2} \\
R_B & \frac{\pi}{2} - \phi
\end{cases} & \text{draws the tangent} \\
& \quad R_{\text{tan}} = \begin{pmatrix}
1.305 & 1.571 \\
1 & 0.873
\end{pmatrix}
\]
add in an involute at a nominal pressure angle of 50 deg and then rotate it by the difference between pressure angles. Notice it overlays the first tangent.

\[
\phi_4 := 50^\circ \quad \theta_4 := \tan(\phi_4) - \phi_4 \quad \theta_4 = 18.282^\circ \quad (\phi_4 - \phi) \cdot k_4 \quad \text{does the rotation with } k_4 = 1
\]

\[
R_{tan1} := \begin{bmatrix}
\frac{R_B}{\cos(\phi_4)} & \frac{\pi}{2} + (\phi_4 - \phi) \cdot k_4 \\
R_B & \frac{\pi}{2} - \phi_4 + (\phi_4 - \phi) \cdot k_4
\end{bmatrix}
\]

\[
R_{tan1} = \begin{bmatrix} 1.556 & 1.745 \\ 1 & 0.873 \end{bmatrix}
\]

the resulting figure is as follows:

tooth construction (design)

at this point we know ...

\[
R_B = \text{radius_of_generating_cylinder}
\]

\[
\phi = \text{pressure_angle}
\]

\[
R = \frac{R_B}{\cos(\phi)} \quad \text{radius as function of pressure angle} = \text{pitch radius at design pressure angle}
\]

define

\[
CP = \text{circular_pitch} = \frac{\text{circumference_of_pitch_diameter}}{\text{number_of_teeth}}
\]
set pressure angle \(\phi := 25 \text{deg} \)

\[
\text{DP} := 10 \quad \text{diametral_pitch} = \frac{\text{DP}}{\text{pitch_diameter}} \quad \frac{N_G}{2R_G} = \frac{N_P}{2R_P} \quad \text{CP_DP} = \pi
\]

\(N_P := 20 \quad \text{number_of_pinion_teeth} \quad N_G := 30 \quad \text{number_of_gear_teeth} \)

\(BL := 0.01 \quad \text{backlash} = 0.01 \quad \text{beyond scope, depends on DP} \)

\(\text{CTT}_P := \frac{\pi}{DP} - \frac{BL}{2} \quad \text{circular_tooth_thickness} \)

\(\text{calculate pitch and base radii} \quad \text{CTT}_G := \text{CTT}_P \quad \text{same on pitch diameter} \)

\[
R_G := \frac{N_G}{DP} \quad R_G = 1.5 \quad \text{pitch_radius_gear} \quad R_{BG} := R_G \cdot \cos(\phi) \quad R_{BG} = 1.359 \quad \text{base_diameter_gear}\]

\[
R_P := \frac{N_P}{DP} \quad R_P = 1 \quad \text{pitch_radius_pinion} \quad R_{BP} := R_P \cdot \cos(\phi) \quad R_{BP} = 0.906 \quad \text{base_diameter_pinion}\]

\[
C := R_G + R_P \quad C = 2.5 \quad \text{center_distance}\]

\[
R := \frac{R_G}{R_P} \quad R = 1.5 \quad \text{gear_ratio} \quad \text{i.e. gear_ration\ is\ ratio\ of\ pitch\ radii\ (or\ diameters\ or\ number\ of\ teeth)}
\]

\[
\text{CTT}_{P2} = 2R_P \left(\frac{\text{CTT}_P}{2R_P} + \text{inv}(\phi_1) - \text{inv}(\phi_2) \right) \quad \text{derived\ from\ involute\ geometry}
\]

\[
\text{at } R_2 \text{ point on thickness of tooth } B \text{ is} \quad B = \theta_1 + \frac{1}{2} \frac{\text{CTT}_1}{R_1} - \theta_2 \quad \text{inv}(\phi) := \tan(\phi) - \phi
\]

\(\text{derived\ below} \ldots \)
\[A = \theta_1 + \frac{1}{2} \frac{\text{CTT}_1}{R_1} \]

\[\text{CTT}_1 = \text{circular_tooth_thickness} \]
\[\phi = \text{pressure_angle_design} \]
\[\theta_1 = \text{involute_of_design_pressure_angle} \]
\[R_1 = \text{pitch_radius} = \frac{R_B}{\cos(\phi)} \]

Here consider varying \(\phi \) from 0 to a value > design angle = \(\phi_2 \)

\[\theta_2 = \text{involute_of}_\phi_2 \]
\[B(\phi_2) = A - \theta_2 \]
\[R_2 = \frac{R_B}{\cos(\phi_2)} \]

so ..
\[B = \theta_1 + \frac{1}{2} \frac{\text{CTT}_1}{R_1} - \theta_2 \]

and points on tooth surface are \(R_2, B \)

additional definitions

addendum dedendum root_diameter

tooth profile ... with pitch radius and base radius shown ...

plot set up
move the pinion out to C, rotating it by π and offsetting both by half tooth thickness $\theta_{plot_G}(R_G)$

geometry to shift circle
plot set up