Operational Reactor Safety
22.091/22.903

Professor Andrew C. Kadak
Professor of the Practice

Lecture 4
Fuel Depletion & Related Effects
Topics to Be Covered

• Fuel “burnup”
• Transmutation
• Conversion/Breeding
• Samarium 149
• Xenon 135
• Operational Impacts
Fuel Burnup

• Depletion Equation

• Definition of burnup
 – thermal energy output per mass of fuel
 – MWD/MTHM
Transmutation

• Equation for production of any nuclide

• Conversion versus Breeding
 – Depending on core physics design of the reactor core
 – η (eta)
 • Number of neutrons produced/absorbed in fuel

• Conversion ratio
 – rate of creation of new fissile/destruction of existing fissile
FIGURE 6-1
Values of eta [η] for fissile nuclides as a function of energy. [Courtesy of Electric Power Research Institute (Shapiro, 1977).]
Breeding Ratios for Reactor Systems

TABLE 6-1
Average Conversion or Breeding Ratios for Reference Reactor Systems

<table>
<thead>
<tr>
<th>Reference reactor</th>
<th>Initial fuel †</th>
<th>Conversion cycle †</th>
<th>Conversion ratio</th>
<th>Breeding ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWR</td>
<td>2–4 wt% ^{235}U</td>
<td>$^{238}\text{U}\text{–Pu}$</td>
<td>0.6</td>
<td>—</td>
</tr>
<tr>
<td>PWR</td>
<td>2–4 wt% ^{235}U</td>
<td>$^{238}\text{U}\text{–Pu}$</td>
<td>0.6</td>
<td>—</td>
</tr>
<tr>
<td>PTGR</td>
<td>1.8–2.1 wt% ^{235}U</td>
<td>$^{238}\text{U}\text{–Pu}$</td>
<td>≥ 0.6</td>
<td>—</td>
</tr>
<tr>
<td>PHWR</td>
<td>Natural U</td>
<td>$^{238}\text{U}\text{–Pu}$</td>
<td>0.8</td>
<td>—</td>
</tr>
<tr>
<td>HTGR</td>
<td>≈ 5 wt% ^{235}U</td>
<td>$^{232}\text{Th}\text{–}^{233}\text{U}$</td>
<td>0.8</td>
<td>—</td>
</tr>
<tr>
<td>LMFBR</td>
<td>10–20 wt% Pu</td>
<td>$^{238}\text{U}\text{–Pu}$</td>
<td>—</td>
<td>1.0–1.6</td>
</tr>
</tbody>
</table>

† All plutonium in power reactors is an isotopic mixture based on initial conversion of ^{238}U to ^{239}Pu and followed by transmutation to the “higher” isotopes.
Buildup of Plutonium with Burnup

FIGURE 6-2
Buildup of plutonium isotopes with burnup for a representative LWR fuel composition.

http://atom.kaeri.re.kr/
TABLE 6-2
Reactivity Penalty from Selected Transmutation Products for Recycle of BWR Fuel†

<table>
<thead>
<tr>
<th>End of cycle number</th>
<th>Reactivity penalty at discharge, %Δk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>236U ‡</td>
</tr>
<tr>
<td>1</td>
<td>0.62</td>
</tr>
<tr>
<td>2</td>
<td>0.90</td>
</tr>
<tr>
<td>3</td>
<td>1.12</td>
</tr>
</tbody>
</table>

‡The 236U concentration is assumed not to decrease in the diffusion plant.
§Neptunium and americium are removed by reprocessing on each recycle.
Fission Products

• Fission Fragments ➔ Fission Products
 – Rate of Creation - \(\gamma \Sigma_f \Phi \)
 – \(\gamma \) fission yield

• Fission Fragment Balance Equation
Samarium Buildup

Basic Theory

\[\begin{align*}
\frac{^{149}\text{Nd}}{\beta^- 1.7 \text{ h}} & \quad \frac{^{149}\text{Pm}}{\beta^- 53 \text{ h}} \quad \frac{(n, \gamma) 40. \times 10^3 \text{ b}}{^{150}\text{Sm}} \\
\end{align*} \]

\[\begin{align*}
\text{FISSILE NUCLIDE} & \quad \gamma^{\text{Nd}} \\
^{233}\text{U} & \quad 0.0066 \\
^{235}\text{U} & \quad 0.0113 \\
^{239}\text{Pu} & \quad 0.0190
\end{align*} \]
FIGURE 6-6
Behavior of ^{149}Sm in representative LWR fuel: (a) decay and reaction chain, (b) fission yields, (c) concentration vs. time.
Xenon Buildup

Basic Theory

![Diagram of Xenon Buildup]

<table>
<thead>
<tr>
<th>FISSILE NUCLIDE</th>
<th>$\gamma^{135\text{Te}}$</th>
<th>$\gamma^{135\text{Xe}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{233}U</td>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td>^{235}U</td>
<td>0.061</td>
<td>0.003</td>
</tr>
<tr>
<td>^{239}Pu</td>
<td>0.055</td>
<td></td>
</tr>
</tbody>
</table>

\[(b) \]
\[3 \times 10^{15} \]

\[2 \times 10^{15} \]

\[1 \times 10^{15} \]

\[0 \]

\[\frac{^{135}Xe \text{ CONCENTRATION at/cm}^3}{0 \quad 20 \quad 40 \quad 0 \quad 20 \quad 40 \quad 60 \quad 80 \quad 100} \]

\[\text{INITIAL STARTUP} \quad \text{SHUTDOWN} \]

\[\text{RESTART} \]

\[\text{TIME FROM INITIAL STARTUP, h} \]

FIGURE 6-7

Behavior of \(^{135}\text{Xe}\) in representative LWR fuel: (a) decay and reaction chain, (b) fission yields, (c) concentration vs. time.
FIGURE 6-8
Poisoning of 135Xe as a function of time after shutdown for a representative LWR fuel composition at various neutron flux levels. Curve 1: $\Phi = 1 \times 10^{13}$ n/cm2·s; Curve 2: $\Phi = 5 \times 10^{13}$ n/cm2·s; Curve 3: $\Phi = 1 \times 10^{14}$ n/cm2·s; Curve 4: $\Phi = 5 \times 10^{14}$ n/cm2·s.
Operational Impacts

- Xenon Oscillations
- Fuel Design for cycle length of core
- Fuel management strategies
- Power peaking limits
- Power distribution control
Reactor Physics Calculations

- Multi-Group Diffusion Equations
 - Model core – using fuel pin and assembly homogenization of materials and fuels with pins averaged horizontally but detailed axially
- Run Static calculation for core power and flux distribution
- Fluxes used to perform depletion calculations as noted for a “time step”
- New material calculations used to produce new power and flux distribution for next “time step” – 1 month
- Incorporate only significant isotopes – high absorption and/or fission cross sections ignoring short lived isotopes in decay chains. – use lumping procedure
- Need to consider early xenon and Samarium build up 50 hours/500 hours
- Track key isotopes for all fuel assemblies for refueling management
Homework Assignment

- Chapter 6
 - Problems: 6.2, 6, 7, 9, 11, 15