Safety Goals
Risk Informed Decision Making
Lecture 12
Topics to be Covered

• Safety Goals
• Subsidiary Safety Goals
• Risk informed decision making
• Criteria for acceptance of design changes
• Risk informed framework
Quantitative Safety Goals

- Early and latent cancer mortality risks to an individual living near the plant should not exceed 0.1% of the background accident or cancer mortality risk:

 \[5 \times 10^{-7} \text{ per year for early death and,} \]
 \[2 \times 10^{-6} \text{ for death from cancer.} \]

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Societal Risks

- **Annual Individual Occupational Risks**
 - All industries: 7×10^{-5}
 - Coal Mining: 24×10^{-5}
 - Fire Fighting: 40×10^{-5}
 - Police: 32×10^{-5}
 - US President: $1,900 \times 10^{-5}$ (!)

- **Annual Public Risks**
 - Total: 870×10^{-5}
 - Heart Disease: 271×10^{-5}
 - All cancers: 200×10^{-5}
 - Motor vehicles: 15×10^{-5}

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Subsidiary Goals

• The average core damage frequency (CDF) should be less than 10^{-4}/reactor year (once every 10,000 reactor years)

• The large early release frequency (LERF) should be less than 10^{-5}/reactor year (once every 100,000 reactor years)
Large Early Release Frequency

- LERF is being used as a surrogate for the early fatalities.

- It is defined as the frequency of those accidents leading to significant, unmitigated releases from containment in a time frame prior to effective evacuation of the close-in population such that there is a potential for early health effects.

- Such accidents generally include unscrubbed releases associated with early containment failure at or shortly after vessel breach, containment bypass events, and loss of containment isolation.

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
PRA Model Overview and Subsidiary Objectives

Level I
PLANT MODEL
- Results
 Accident sequences leading to plant damage states

Level II
CONTAINMENT MODEL
- Results
 Containment failure/release sequences

Level III
SITE/CONSEQUENCE MODEL
- Results
 Public health effects

PLANT MODE
- At-power Operation
- Shutdown / Transition
- Evolutions

SCOPE
- Internal Events
- External Events

CDF 10^{-4}/ry
LERF 10^{-5}/ry

Prof. Andrew C. Kadak, 2008
Page 7

Integrated Decision Making

- Comply with Regulations
- Maintain Defense-in-Depth Philosophy
- Maintain Safety Margins
- Risk Decrease, Neutral, or Small Increase
- Monitor Performance
Acceptance Guidelines for Core Damage Frequency

- **Region I**
 - No changes
- **Region II**
 - Small Changes
 - Track Cumulative Impacts
- **Region III**
 - Very Small Changes
 - More flexibility with respect to Baseline
 - Track Cumulative Impacts

CDF

\[\Delta CDF \]

\[10^{-6} \]

\[10^{-5} \]
Important Note

“The analysis will be subject to increased technical review and management attention as indicated by the darkness of the shading of the figure. In the context of the integrated decision-making, the boundaries between regions should not be interpreted as being definitive; the numerical values associated with defining the regions in the figure are to be interpreted as indicative values only.”

Regulatory Guide 1.174

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Increased NRC Management Attention

Consider:

• The cumulative impact of previous changes and the trend in CDF (the licensee’s risk management approach);

• The cumulative impact of previous changes and the trend in LERF (the licensee’s risk management approach);

• The impact of the proposed change on operational complexity, burden on the operating staff, and overall safety practices;

• Plant-specific performance and other factors, including, for example, siting factors, inspection findings, performance indicators, and operational events; and Level 3 PRA information, if available;

• The benefit of the change in relation to its CDF/LERF increase;

• The practicality of accomplishing the change with a smaller CDF/LERF impact; and

• The practicality of reducing CDF/LERF, in circumstances where there is reason to believe that the baseline CDF/LERF are above the guideline values (i.e., 10-4 and 10-5 per reactor year).
Defense In Depth (RG 1.174)

- A reasonable balance is preserved among prevention of core damage, prevention of containment failure, and consequence mitigation.

- Over-reliance on programmatic activities to compensate for weaknesses in plant design is avoided.

- System redundancy, independence, and diversity are preserved commensurate with the expected frequency, consequences of challenges to the system, and uncertainties (e.g., no risk outliers).

- Defenses against common-cause failures are preserved, and the potential for the introduction of new common-cause failure mechanisms is assessed.

- Independence of barriers is not degraded.

- Defenses against human errors are preserved.

- The intent of the GDC in Appendix A to 10 CFR Part 50 is maintained.
Uncertainties

• Aleatory uncertainty is built into the structure of the PRA model itself. (random uncertainty – when pump fails)

• Epistemic uncertainties:

 ➢ **Parameter uncertainties** are those associated with the values of the fundamental parameters of the PRA model, such as equipment failure rates, initiating event frequencies, and human error probabilities that are used in the quantification of the accident sequence frequencies.

 ➢ In many cases, understanding of certain processes or phenomena is incomplete, and there may be different opinions on how the models should be formulated. Examples: modeling human performance, common cause failures, and reactor coolant pump seal behavior upon loss of seal cooling. This gives rise to **model uncertainty**.

 ➢ Completeness is not in itself an uncertainty, but a reflection of scope limitations. The problem with **completeness uncertainty** is that, because it reflects an unanalyzed contribution, it is difficult (if not impossible) to estimate its magnitude. Examples: the analysis of some external events and the low power and shutdown modes of operation, and influences of organizational performance.
Comparison with Acceptance Guidelines

• The acceptance guidelines were established with the Commission’s Safety Goals and subsidiary objectives in mind, and these goals were intended to be compared with mean values. Therefore, the mean values of the distributions should be used.

• For the distributions generated in typical PRAs, the mean values typically corresponded to the region of the 70th to 80th percentiles, and coupled with a sensitivity analysis focused on the most important contributors to uncertainty, can be used for effective decision-making.

• Approach: Address parametric uncertainty and any explicit model uncertainties in the assessment of mean values; perform sensitivity studies to evaluate the impact of changes in key assumptions or the use of alternate models for the principal implicit model uncertainties; and use quantitative analyses or qualitative analyses as necessary to address incompleteness as appropriate to the decision and the acceptance guidelines.
The Significance Determination Process

- Characterizes the significance of inspection findings using risk insights
- Provides framework for communicating potential safety-significant findings
- Provides basis for assessment and/or enforcement actions
Levels of Significance Associated with Performance Indicators and Inspection Findings

- **Green** - very low risk significance (for PIs: Within peer performance)
- **White** - low to moderate risk significance
- **Yellow** - substantive risk significance
- **Red** - high risk significance

ΔCDF < 1E-6

1E-6 < ΔCDF < 1E-5

1E-5 < ΔCDF < 1E-4

ΔCDF > 1E-4
Phased Approach to PRA Quality

• In the 12/18/03 Staff Requirements Memorandum, the Commission approved the implementation of a phased approach to PRA quality.

• The phases are differentiated by the availability of standards.

• Phase 3 should be achieved by December 31, 2008. Guidance documents will be available to support all anticipated applications.

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Risk-Informed Framework

Traditional “Deterministic” Approaches
- Unquantified Probabilities
- Design-Basis Accidents
- Structuralist Defense in Depth
- Can impose heavy regulatory burden
- Incomplete

Risk-Informed Approach
- Combination of traditional and risk-based approaches

Risk-Based Approach
- Quantified Probabilities
- Scenario Based
- Realistic
- Rationalist Defense in Depth
- Incomplete
- Quality is an issue
Safety Monitor

<table>
<thead>
<tr>
<th>Mode/POS</th>
<th>Integrated Risk (from 1/1/2005)</th>
<th>CDF</th>
<th>LERF</th>
<th>TRIP</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1PwR</td>
<td>Not applicable</td>
<td>1.29E-04</td>
<td>6.01E-06</td>
<td>Auto data input</td>
<td>OFF</td>
</tr>
<tr>
<td>Time of last shutdown</td>
<td>Not applicable</td>
<td>Allowed Config Time</td>
<td>123h:22m</td>
<td>141h:30m</td>
<td>Debug mode</td>
</tr>
<tr>
<td>Time to Boil</td>
<td>123h:22m</td>
<td>ACT expires</td>
<td>07/24/2005 00:00</td>
<td>07/30/2005 03:00</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High</th>
<th>Caution</th>
<th>Moderate</th>
<th>Normal</th>
</tr>
</thead>
</table>

Real Mode

Instantaneous Core Damage Frequency

<table>
<thead>
<tr>
<th>CDF</th>
<th>LERF</th>
<th>TRIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.54E-03</td>
<td>3.54E-04</td>
<td>5.32E+01</td>
</tr>
<tr>
<td>1.00E-03</td>
<td>1.00E-04</td>
<td>2.00E+00</td>
</tr>
<tr>
<td>5.00E-04</td>
<td>5.00E-05</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>8.00E-05</td>
<td>8.00E-06</td>
<td>2.00E+00</td>
</tr>
<tr>
<td>2.26E-05</td>
<td>2.26E-06</td>
<td>6.32E-01</td>
</tr>
<tr>
<td>3.30E-05</td>
<td>1.54E-06</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>
22.091 Nuclear Reactor Safety
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.