Electricity and Magnetism

• Reminder
 – RC circuits
 – Electric Breakdown Experiment

• Today
 – Magnetism
RC Circuits

Variable time constant $\tau = RC$
In-Class Demo

V_{in}

V_C

I

Apr 1 2002
In-Class Demo

- Changes in R or C change τ
- Large τ smoothes out signals
- Sharp edges/rapid changes get removed – high frequencies are suppressed
- RC circuits are low-pass filters
Experiment EB

• Electrical Breakdown
 - You have seen many examples
 • Lightning!
 • Sparks (e.g. Faraday Cage Demo!)
 • Fluorescent tubes
 - Study in more detail
 - Reminder: Ionization
Ionization

- Electrons and nucleus bound together
- Electrons stuck in potential well of nucleus
- Need energy ΔU to jump out of well
- How to provide this energy?
Impact Ionization

$e^- \quad U_{\text{kin}} > \Delta U$

- Define $V_{\text{ion}} = \Delta U/q$
- Ionization potential
- One e^- in, two e^- out
- Avalanche?
Impact Ionization

(2) \(\lambda_{\text{mfp}} \) e\(^-\) (1) \(\lambda_{\text{mfp}} \) : Mean Free Path

\[E \rightarrow \]

- To get avalanche we need:
\[\Delta U_{\text{kin}} \text{ between collisions (1) and (2)} > V_{\text{ion}} * e \]

- Acceleration in uniform Field
\[\Delta U_{\text{kin}} = V_2 - V_1 = e E d_{12} \]

- Avalanche condition then
\[E > V_{\text{ion}} / \lambda_{\text{mfp}} \]

Apr 1 2002
Impact Ionization

How big is Mean Free Path?

(i) If Density \(n \) is big \(\rightarrow \lambda_{\text{mfp}} \) small

(ii) If size \(\sigma \) of molecules is big \(\rightarrow \lambda_{\text{mfp}} \) small

\[\lambda_{\text{mfp}} = \frac{1}{n \sigma} \]
Impact Ionization

Avalanche condition $E > \frac{V_{\text{ion}}}{\lambda_{\text{mfp}}} = V_{\text{ion}} n \sigma$

Experiment EB: Relate $E, V_{\text{ion}}, \sigma$

Example: Air

$n \sim 6 \times 10^{23}/22.4 \ 10^{-3} \ m^3 = 3 \times 10^{25} \ m^{-3}$

$\sigma \sim \pi r^2 \sim 3 \times (10^{-10} \ m)^2 = 3 \times 10^{-20} \ m^2$

$V_{\text{ion}} \sim 10 \ V$

Need $E > 3 \times 10^{25} \ m^{-3} \times 3 \times 10^{-20} \ m^2 \times 10 \ V \sim 10^7 \ V/m$

For $V \sim 800 \ V$: $V = E d \rightarrow d = \frac{800}{10^7} \ m \sim 0.1 \ mm$
Experiment EB

HVPS

\(+ \) \(- \)

\(V \)

1M\(\Omega \)

1M\(\Omega \)

d

Apr 1 2002
Magnetism

• **Magnets**: Materials with ‘strange’ properties

• Magnets have been known for thousands of years

• It took until end of 19th century to understand the theory of Magnetism
Magnetic Force

• New Force between Magnets
• Unlike Poles attract

\[\text{SN} \quad \text{F} \quad \text{SN} \]

• Like Poles repel

\[\text{SN} \quad \text{F} \quad \text{SN} \]

Apr 1 2002
Magnets

• Permanent Magnets

• Two poles (called ‘north’ and ‘south’)

• Let’s look at some properties
Magnetic Force

- Magnets also attract non-magnets!
Magnetic Force

• New phenomenon

• Magnets carry no net charge!

• Although not understood, magnetic phenomena have been used for a long time -> In-Class Demo!
Electric Dipole in Electric Field

Apr 1 2002
Compass

• Freely rotating magnets point towards earth’s (magnetic) north pole
Magnetic Field

• Magnets align themselves with Magnetic Field
 like Electric Dipoles in Electric Field

• What is the Source of the Magnetic Field?
Current and Magnet

Wire, I = 0

N
S

Wire, I > 0

N
S
Source of the Magnetic Field

- No effect due to Static Charges
- But: An Electric Current affects Magnet
- Does Magnet affect Current?
Magnet and Current

- Force on wire if $I \neq 0$
- Direction of Force depends on Sign of I
- Force perpendicular to I
Current and Current

Attraction

Repulsion
Summary

• Observed Force between
 - two Magnets
 - Magnet and Iron
 - Magnet and wire carrying current
 - Wire carrying current and Magnet
 - Two wires carrying currents

• Currents (moving charges) can be subject to and source of Magnetic Force
Free Charges and Magnetic Field

\[\overrightarrow{F_L} = q (\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}) \]

Lorentz Force

\[F_{\text{acc}} = \frac{m v^2}{R} = F_L \]

\[R = \frac{m v}{q B} \]

Cyclotron Radius

\([B] = \frac{N}{(A \, m)} = T \text{ (Tesla)}\]
Magnetic Field and Work

\[\vec{F}_L = q \vec{v} \times \vec{B} \quad \text{(for } E = 0) \]