Systems Biology ?
GOAL: develop a quantitative understanding of the biological function of genetic and biochemical networks

- function of gene product A-F can be known in detail but this is not sufficient to reveal the biological function of the INPUT-OUTPUT relation
- a system approach (looking beyond one gene/protein) is necessary to reveal the biological function of this whole network
- what is the function of the individual interactions (feedbacks and feedforwards) in the context of the entire network?
Alternatively,

Systems Engineering + Molecular Biology

\[\text{Systems Biology} = \text{Applying Systems Engineering concepts to Biological Systems}\]
A traditional molecular biologist would ask:

- what is the molecular structure of the cl dimer?
- what is DNA sequence recognized by the cl dimer?
- what are the essential amino acids in cl responsible for dimerization?
- what are the values for \(K_1 \) and \(K_2 \)?
- is the sequence conserved during evolution?

Focussed on the molecule cl.
A systems biologist would ask:

- what is the functional role of the feedback?
- how can this lead to a hysteretic switch?
- what is the role of noise in determining the stability of the switch?
- is the performance of the switch sensitive to small changes in the parameters (fine-tuned) of not (robust).
- how are these parameters changed when this module is cross-talking to other modules.

Focussed on the network architecture.
Goal of this course:

- provide you with the essential mathematical tools to be able to model network modules, such as biological switches, oscillators, filters, amplifiers, etc.

- provide you with lots of example of biological problems that can be successfully tackled with a systems biology approach (first well-stirred systems, second diffusion-dominated systems) by discussing recent recent papers.