24.242 | Spring 2004 | Undergraduate

Logic II

Lecture Notes

LEC # TOPICS
1 Why Study Computability? (PDF)
2-3 Key Computability Concepts (PDF)
4 The Language of Arithmetic (PDF)
5 Church-Turing Thesis (PDF)
6 Nonstandard Models of Arithmetic (PDF)
7 Gödel Numbering (PDF)
8 Robinson’s Arithmetic (PDF)
9-10 Coding Proofs (PDF)
11-12 Peano Arithmetic (PDF)
13-14 Self-Reference Lemma (PDF)
15-16 First Incompleteness Theorem (PDF)
17 Interpretations (PDF)
18 Tarski’s Theory of Truth (PDF)
19

Gödel, Mechanism, and Mind

Articles by Lucas and Benacerraf

20-21 Second Incompleteness Theorem (PDF)
22 Introduction to Modal Logic (PDF)
23-24 Provability Logic (PDF)
25 Defining Exponentiation (PDF)

Course Info

Instructor
As Taught In
Spring 2004
Learning Resource Types
Lecture Notes
Problem Sets with Solutions