Video Lectures

Time Dependent Perturbation Theory and Adiabatic Approximation

lec # topics
Lecture 10: Fermi’s Golden Rule
L10.1 L10.1 Box regularization: density of states for the continuum (20:31)
L10.2 L10.2 Transitions with a constant perturbation (19:01)
L10.3 L10.3 Integrating over the continuum to find Fermi's Golden Rule (19:37)
L10.4 L10.4 Autoionization transitions (11:30)
Lecture 11: Fermi’s Golden Rule for Harmonic Transitions
L11.1 L11.1 Harmonic transitions between discrete states (15:12)
L11.2 L11.2 Transition rates for stimulated emission and absorption processes (17:12)
L11.3 L11.3 Ionization of hydrogen: conditions of validity, initial and final states (20:54)
L11.4 L11.4 Ionization of Hydrogen: Matrix Element for Transition (22:20)
Lecture 12: Hydrogen Ionization (completed). Light and Atoms
L12.1 L12.1 Ionization Rate for Hydrogen: Final Result (16:23)
L12.2 L12.2 Light and Atoms with Two Levels, Qualitative Analysis (14:31)
L12.3 L12.3 Einstein's Argument: the Need for Spontaneous Emission (19:31)
L12.4 L12.4 Einstein's argument: B and A coefficients (9:42)
L12.5 L12.5 Atom-light interactions: dipole operator (11:10)
Lecture 13: Light and Atoms (continued). Charged Particles in Electromagnetic Fields
L13.1 L13.1 Transition rates induced by thermal radiation (17:50)
L13.2 L13.2 Transition rates induced by thermal radiation (continued) (16:35)
L13.3 L13.3 Einstein's B and A coefficients determined. Lifetimes and selection rules (13:54)
L13.4 76743939l13.4chargedparticlesinemfieldspotentialsandgaugeinvariance95906294 (21:50)
L13.5 55132138l13.5chargedparticlesinemfieldsschrodingerequation59167728 (8:38)
Lecture 14: Charged Particles in Electromagnetic Fields (continued)
L14.1 L14.1 Gauge invariance of the Schrodinger Equation (21:08)
L14.2 L14.2 Quantization of the magnetic field on a torus (25:14)
L14.3 L14.3 Particle in a constant magnetic field: Landau levels (18:19)
L14.4 L14.4 Landau levels (continued). Finite sample (9:07)
Lecture 15: Adiabatic Approximation
L15.1 L15.1 Classical analog: oscillator with slowly varying frequency (16:34)
L15.2 L15.2 Classical adiabatic invariant (15:07)
L15.3 L15.3 Phase space and intuition for quantum adiabatic invariants (16:23)
L15.4 L15.4 Instantaneous energy eigenstates and Schrodinger equation (26:46)
Lecture 16: Adiabatic Approximation (continued)
L16.1 L16.1 Quantum adiabatic theorem stated (13:02)
L16.2 L16.2 Analysis with an orthonormal basis of instantaneous energy eigenstates (14:31)
L16.3 L16.3 Error in the adiabatic approximation (14:21)
L16.4 L16.4 Landau-Zener transitions (19:30)
L16.5 L16.5 Landau-Zener transitions (continued) (14:18)
Lecture 17: Adiabatic Approximation: Berry’s Phase
L17.1 L17.1 Configuration space for Hamiltonians (15:27)
L17.2 L17.2 Berry's phase and Berry's connection (25:04)
L17.3 L17.3 Properties of Berry's phase (11:12)
L17.4 L17.4 Molecules and energy scales (17:57)
Lecture 18: Adiabatic Approximation: Molecules
L18.1 L18.1 Born-Oppenheimer approximation: Hamiltonian and electronic states (24:48)
L18.2 L18.2 Effective nuclear Hamiltonian. Electronic Berry connection (20:02)
L18.3 L18.3 Example: The hydrogen molecule ion (27:01)

Course Info

Learning Resource Types

theaters Lecture Videos
assignment Problem Sets
notes Lecture Notes
group_work Projects