Lecture 10: Fermi’s Golden Rule

L10.1

L10.1 Box regularization: density of states for the continuum (20:31)


L10.2

L10.2 Transitions with a constant perturbation (19:01)


L10.3

L10.3 Integrating over the continuum to find Fermi’s Golden Rule (19:37)


L10.4

L10.4 Autoionization transitions (11:30)


Lecture 11: Fermi’s Golden Rule for Harmonic Transitions

L11.1

L11.1 Harmonic transitions between discrete states (15:12)


L11.2

L11.2 Transition rates for stimulated emission and absorption processes (17:12)


L11.3

L11.3 Ionization of hydrogen: conditions of validity, initial and final states (20:54)


L11.4

L11.4 Ionization of Hydrogen: Matrix Element for Transition (22:20)


Lecture 12: Hydrogen Ionization (completed). Light and Atoms

L12.1

L12.1 Ionization Rate for Hydrogen: Final Result (16:23)


L12.2

L12.2 Light and Atoms with Two Levels, Qualitative Analysis (14:31)


L12.3

L12.3 Einstein’s Argument: the Need for Spontaneous Emission (19:31)


L12.4

L12.4 Einstein’s argument: B and A coefficients (9:42)


L12.5

L12.5 Atomlight interactions: dipole operator (11:10)


Lecture 13: Light and Atoms (continued). Charged Particles in Electromagnetic Fields

L13.1

L13.1 Transition rates induced by thermal radiation (17:50)


L13.2

L13.2 Transition rates induced by thermal radiation (continued) (16:35)


L13.3

L13.3 Einstein’s B and A coefficients determined. Lifetimes and selection rules (13:54)


L13.4

L13.4 Charged particles in EM fields: potentials and gauge invariance (21:50)


L13.5

L13.5 Charged particles in EM fields: Schrodinger equation (8:38)


Lecture 14: Charged Particles in Electromagnetic Fields (continued)

L14.1

L14.1 Gauge invariance of the Schrodinger Equation (21:08)


L14.2

L14.2 Quantization of the magnetic field on a torus (25:14)


L14.3

L14.3 Particle in a constant magnetic field: Landau levels (18:19)


L14.4

L14.4 Landau levels (continued). Finite sample (9:07)


Lecture 15: Adiabatic Approximation

L15.1

L15.1 Classical analog: oscillator with slowly varying frequency (16:34)


L15.2

L15.2 Classical adiabatic invariant (15:07)


L15.3

L15.3 Phase space and intuition for quantum adiabatic invariants (16:23)


L15.4

L15.4 Instantaneous energy eigenstates and Schrodinger equation (26:46)


Lecture 16: Adiabatic Approximation (continued)

L16.1

L16.1 Quantum adiabatic theorem stated (13:02)


L16.2

L16.2 Analysis with an orthonormal basis of instantaneous energy eigenstates (14:31)


L16.3

L16.3 Error in the adiabatic approximation (14:21)


L16.4

L16.4 LandauZener transitions (19:30)


L16.5

L16.5 LandauZener transitions (continued) (14:18)


Lecture 17: Adiabatic Approximation: Berry’s Phase

L17.1

L17.1 Configuration space for Hamiltonians (15:27)


L17.2

L17.2 Berry’s phase and Berry’s connection (25:04)


L17.3

L17.3 Properties of Berry’s phase (11:12)


L17.4

L17.4 Molecules and energy scales (17:57)


Lecture 18: Adiabatic Approximation: Molecules

L18.1

L18.1 BornOppenheimer approximation: Hamiltonian and electronic states (24:48)


L18.2

L18.2 Effective nuclear Hamiltonian. Electronic Berry connection (20:02)


L18.3

L18.3 Example: The hydrogen molecule ion (27:01)

