Lecture 4
Menu

• Priority Queues
• Heaps
• Heapsort
Priority Queue

A data structure implementing a set S of elements, each associated with a key, supporting the following operations:

- $\text{insert}(S, x)$: insert element x into set S
- $\text{max}(S)$: return element of S with largest key
- $\text{extract_max}(S)$: return element of S with largest key and remove it from S
- $\text{increase_key}(S, x, k)$: increase the value of element x's key to new value k
 (assumed to be as large as current value)
Heap

• Implementation of a priority queue
• An array, visualized as a nearly complete binary tree
• **Max Heap Property**: The key of a node is \geq than the keys of its children
 (Min Heap defined analogously)
Heap as a Tree

root of tree: first element in the array, corresponding to $i = 1$

$parent(i) = i/2$: returns index of node's parent

$left(i) = 2i$: returns index of node's left child

$right(i) = 2i + 1$: returns index of node's right child

No pointers required! Height of a binary heap is $O(\lg n)$
Heap Operations

\texttt{build_max_heap} : produce a max-heap from an unordered array

\texttt{max_heapify} : correct a \texttt{single} violation of the heap property in a subtree at its root

\texttt{insert, extract_max, heapsort}
Max_heapify

• Assume that the trees rooted at left(i) and right(i) are max-heaps

• If element $A[i]$ violates the max-heap property, correct violation by “trickling” element $A[i]$ down the tree, making the subtree rooted at index i a max-heap
Max_heapify (Example)

Node 10 is the left child of node 5 but is drawn to the right for convenience.
Max_heapify (Example)

Call MAX_HEAPIFY(A,4) because max_heap property is violated
Max_heapify (Example)

No more calls

Time=? \(O(\log n) \)
Max_Heapify Pseudocode

\[l = \text{left}(i) \]
\[r = \text{right}(i) \]
if \((l \leq \text{heap-size}(A) \text{ and } A[l] > A[i])\)
\hspace{1cm} \text{then largest} = l \hspace{1cm} \text{else largest} = i \]
if \((r \leq \text{heap-size}(A) \text{ and } A[r] > A[\text{largest}])\)
\hspace{1cm} \text{then largest} = r \]
if largest \(\neq i\)
\hspace{1cm} \text{then exchange } A[i] \text{ and } A[\text{largest}] \]
\hspace{1cm} \text{Max_Heapify}(A, \text{largest})}
Build_Max_Heap(A)

Converts $A[1...n]$ to a max heap

Build_Max_Heap(A):
 for $i = n/2$ downto 1
 do Max_Heapify(A, i)

Why start at $n/2$?

Because elements $A[n/2 + 1 ... n]$ are all leaves of the tree
$2i > n$, for $i > n/2 + 1$

Time=? $O(n \log n)$ via simple analysis
Build_Max_Heap(A) Analysis

Converts A[1…n] to a max heap

Build_Max_Heap(A):
 for i=n/2 downto 1
 do Max_Heapify(A, i)

Observe however that Max_Heapify takes O(1) for time for nodes that are one level above the leaves, and in general, O(l) for the nodes that are l levels above the leaves. We have n/4 nodes with level 1, n/8 with level 2, and so on till we have one root node that is lg n levels above the leaves.
Build_Max_Heap(A) Analysis

Converts $A[1…n]$ to a max heap

Build_Max_Heap(A):
 for $i=n/2$ downto 1
 do Max_Heapify(A, i)

Total amount of work in the for loop can be summed as:
 $n/4 \cdot 1 + n/8 \cdot 2 + n/16 \cdot 3 + \ldots + 1 \cdot \lg n$

Setting $n/4 = 2^k$ and simplifying we get:
 $c \cdot 2^k \left(1/2^0 + 2/2^1 + 3/2^2 + \ldots + (k+1)/2^k \right)$

The term in brackets is bounded by a constant!

This means that Build_Max_Heap is $O(n)$
Build-Max-Heap Demo

A

4 1 3 2 16 9 10 14 8 7

MAX-HEAPIFY (A,5)
no change
MAX-HEAPIFY (A,4)

MAX-HEAPIFY (A,3)
Build-Max-Heap Demo

MAX-HEAPIFY (A, 2)

MAX-HEAPIFY (A, 1)
Build-Max-Heap
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)

5. New root may violate max heap property, but its children are max heaps. Run max_heapify to fix this.
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)

5. New root may violate max heap property, but its children are max heaps. Run max_heapify to fix this.

6. Go to Step 2 unless heap is empty.
Heap-Sort Demo

Max_heapify(A,1)
Heap-Sort Demo

Heap-Sort Demo

MAX_HEAPIFY (A, 1)

not part of heap
Heap-Sort Demo

Heap-Sort

Running time:

after n iterations the Heap is empty
every iteration involves a swap and a max_heapify
operation; hence it takes $O(\log n)$ time

Overall $O(n \log n)$
6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.