Lecture 9: Hashing II

Lecture Overview

- Table Resizing
- Amortization
- String Matching and Karp-Rabin
- Rolling Hash

Recall:

Hashing with Chaining:

![Diagram](figure1.png)

Figure 1: Hashing with Chaining

Expected cost (insert/delete/search): $\Theta(1 + \alpha)$, assuming simple uniform hashing OR universal hashing & hash function h takes $O(1)$ time.

Division Method:

$$h(k) = k \mod m$$

where m is ideally prime

Multiplication Method:

$$h(k) = [(a \cdot k) \mod 2^w] \gg (w - r)$$

where a is a random odd integer between 2^{w-1} and 2^w, k is given by w bits, and $m = \text{table size} = 2^r$.
How Large should Table be?

- want $m = \Theta(n)$ at all times
- don’t know how large n will get at creation
- m too small \implies slow; m too big \implies wasteful

Idea:
Start small (constant) and grow (or shrink) as necessary.

Rehashing:
To grow or shrink table hash function must change (m, r)

\implies must rebuild hash table from scratch
for item in old table: \implies for each slot, for item in slot
insert into new table
\implies $\Theta(n + m)$ time $= \Theta(n)$ if $m = \Theta(n)$

How fast to grow?
When n reaches m, say

- $m + =1$?
 \implies rebuild every step
 \implies n inserts cost $\Theta(1 + 2 + \cdots + n) = \Theta(n^2)$

- $m * =2$? $m = \Theta(n)$ still $(r+ =1)$
 \implies rebuild at insertion 2^i
 \implies n inserts cost $\Theta(1 + 2 + 4 + 8 + \cdots + n)$ where n is really the next power of 2
 $= \Theta(n)$

- a few inserts cost linear time, but $\Theta(1)$ “on average”.

Amortized Analysis

This is a common technique in data structures — like paying rent: $1500/month \approx $50/day

- operation has amortized cost $T(n)$ if k operations cost $\leq k \cdot T(n)$
- “$T(n)$ amortized” roughly means $T(n)$ “on average”, but averaged over all ops.
- e.g. inserting into a hash table takes $O(1)$ amortized time.
Back to Hashing:
Maintain \(m = \Theta(n) \implies \alpha = \Theta(1) \implies \) support search in \(O(1) \) expected time (assuming simple uniform or universal hashing)

Delete:
Also \(O(1) \) expected as is.

- space can get big with respect to \(n \) e.g. \(n \times \) insert, \(n \times \) delete
- solution: when \(n \) decreases to \(m/4 \), shrink to half the size \(\implies O(1) \) amortized cost for both insert and delete — analysis is harder; see CLRS 17.4.

Resizable Arrays:
- same trick solves Python “list” (array)
- \(\implies \) list.append and list.pop in \(O(1) \) amortized

String Matching
Given two strings \(s \) and \(t \), does \(s \) occur as a substring of \(t \)? (and if so, where and how many times?)
E.g. \(s = \text{‘6.006’} \) and \(t = \) your entire INBOX (‘grep’ on UNIX)

Simple Algorithm:
\[
\text{any}(s == t[i : i + \text{len}(s)] \text{ for } i \text{ in range(len}(t) - \text{len}(s)))
\]
= \(O(|s| \cdot |t|) \) potentially quadratic
Karp-Rabin Algorithm:

- Compare \(h(s) == h(t[i:i+\text{len}(s)]) \)
- If hash values match, likely so do strings
 - can check \(s == t[i:i+\text{len}(s)] \) to be sure \(\sim \text{cost } O(|s|) \)
 - if yes, found match — done
 - if no, happened with probability \(< \frac{1}{|s|} \)
 \(\Longrightarrow \) expected cost is \(O(1) \) per \(i \).

- need suitable hash function.
- expected time = \(O(|s| + |t| \cdot \text{cost}(h)) \).
 - naively \(h(x) \) costs \(|x| \)
 - we’ll achieve \(O(1) ! \)
 - idea: \(t[i:i+\text{len}(s)] \approx t[i+1:i+1+\text{len}(s)] \).

Rolling Hash ADT

Maintain string \(x \) subject to

- \(r() \): reasonable hash function \(h(x) \) on string \(x \)
- \(r.append(c) \): add letter \(c \) to end of string \(x \)
- \(r.skip(c) \): remove front letter from string \(x \), assuming it is \(c \)

Karp-Rabin Application:

```python
for c in s: rs.append(c)
for c in t[\ldots]: rt.append(c)
if rs() == rt(): ...```

This first block of code is \( O(|s|) \)
for i in range(len(s), len(t)):
    rt.skip(t[i-len(s)])
    rt.append(t[i])
    if rs() == rt(): ...

The second block of code is $O(|t|) + O(\#\text{matches} - |s|)$ to verify.

**Data Structure:**

Treat string $x$ as a multidigit number $u$ in base $a$ where $a$ denotes the alphabet size, e.g., 256

- $r() = u \mod p$ for (ideally random) prime $p \approx |s|$ or $|t|$ (division method)
- $r$ stores $u \mod p$ and $|x|$ (really $a^{|x|}$), not $u$
  $\implies$ smaller and faster to work with ($u \mod p$ fits in one machine word)
- $r$.append($c$): $(u \cdot a + \text{ord}(c)) \mod p = [(u \mod p) \cdot a + \text{ord}(c)] \mod p$
- $r$.skip($c$): $[u - \text{ord}(c) \cdot (a^{|u|} \mod p)] \mod p$
  $\quad = [(u \mod p) - \text{ord}(c) \cdot (a^{|x|} \mod p)] \mod p$
6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.