Lecture 23: Computational Complexity

Lecture Overview

- P, EXP, R
- Most problems are uncomputable
- NP
- Hardness & completeness
- Reductions

Definitions:

- \(P = \{ \text{problems solvable in polynomial } (n^c) \text{ time} \} \)
 (what this class is all about)
- \(EXP = \{ \text{problems solvable in exponential } (2^{n^c}) \text{ time} \} \)
- \(R = \{ \text{problems solvable in finite time} \} \) “recursive” [Turing 1936; Church 1941]

\[P \subseteq EXP \subseteq R = \{ \text{computable} \} \]

Examples

- negative-weight cycle detection \(\in P \)
- \(n \times n \) Chess \(\in EXP \) but \(\notin P \)
 Who wins from given board configuration?
- Tetris \(\in EXP \) but don’t know whether \(\in P \)
 Survive given pieces from given board.
Halting Problem:
Given a computer program, does it ever halt (stop)?
- uncomputable (∉ R): no algorithm solves it (correctly in finite time on all inputs)
- decision problem: answer is YES or NO

Most Decision Problems are Uncomputable
- program ≈ binary string ≈ nonneg. integer ∈ N
- decision problem = a function from binary strings (≈ nonneg. integers) to {YES (1), NO (0)}
- ≈ infinite sequence of bits ≈ real number ∈ R
 |N| ≪ |R|: no assignment of unique nonneg. integers to real numbers (R uncountable)
- ⇒ not nearly enough programs for all problems
- each program solves only one problem
- ⇒ almost all problems cannot be solved

NP

NP = {Decision problems solvable in polynomial time via a “lucky” algorithm}. The “lucky” algorithm can make lucky guesses, always “right” without trying all options.

- nondeterministic model: algorithm makes guesses & then says YES or NO
- guesses guaranteed to lead to YES outcome if possible (no otherwise)

In other words, NP = {decision problems with solutions that can be “checked” in polynomial time}. This means that when answer = YES, can “prove” it & polynomial-time algorithm can check proof

Example

Tetris ∈ NP
- nondeterministic algorithm: guess each move, did I survive?
- proof of YES: list what moves to make (rules of Tetris are easy)
P \neq \text{NP}

Big conjecture (worth $1,000,000)

- \approx \text{cannot engineer luck}
- \approx \text{generating (proofs of) solutions can be harder than checking them}

Hardness and Completeness

Claim:

If P \neq \text{NP}, then \text{Tetris} \in \text{NP} - \text{P}
[Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-Nowell 2004]

Why:

Tetris is \text{NP-hard} = “as hard as” every problem \in \text{NP}. In fact \text{NP-complete} = \text{NP} \cap \text{NP-hard}.
Similarly

Chess is EXP-complete = EXP ∩ EXP-hard. EXP-hard is as hard as every problem in EXP. If \(\text{NP} \neq \text{EXP} \), then Chess \(\notin \text{EXP} \setminus \text{NP} \). Whether \(\text{NP} \neq \text{EXP} \) is also an open problem but less famous/“important”.

Reductions

Convert your problem into a problem you already know how to solve (instead of solving from scratch)

- most common algorithm design technique
- unweighted shortest path \(\rightarrow \) weighted (set weights = 1)
- min-product path \(\rightarrow \) shortest path (take logs) [PS6-1]
- longest path \(\rightarrow \) shortest path (negate weights) [Quiz 2, P1k]
- shortest ordered tour \(\rightarrow \) shortest path (\(k \) copies of the graph) [Quiz 2, P5]
- cheapest leaky-tank path \(\rightarrow \) shortest path (graph reduction) [Quiz 2, P6]

All the above are One-call reductions: A problem \(\rightarrow \) B problem \(\rightarrow \) B solution \(\rightarrow \) A solution

Multicall reductions: solve A using free calls to B — in this sense, every algorithm reduces problem \(\rightarrow \) model of computation

NP-complete problems are all interreducible using polynomial-time reductions (same difficulty). This implies that we can use reductions to prove NP-hardness — such as in 3-Partition \(\rightarrow \) Tetris

Examples of NP-Complete Problems

- Knapsack (pseudopoly, not poly)
- 3-Partition: given \(n \) integers, can you divide them into triples of equal sum?
- Traveling Salesman Problem: shortest path that visits all vertices of a given graph — decision version: is minimum weight \(\leq x \)?
- longest common subsequence of \(k \) strings
- Minesweeper, Sudoku, and most puzzles
- SAT: given a Boolean formula (and, or, not), is it true? \(x \) and not \(x \) \(\rightarrow \) NO
- shortest paths amidst obstacles in 3D
• 3-coloring a given graph

• find largest clique in a given graph