LECTURE 17

• Readings: Start Section 5.2

Lecture outline

• Review of the Bernoulli process
• Definition of the Poisson process
• Basic properties of the Poisson process
 – Distribution of the number of arrivals
 – Distribution of the interarrival time
 – Distribution of the \(k^{\text{th}} \) arrival time
The Bernoulli Process: Review

1 2 \ldots

- Discrete time; success probability in each slot = p.
- PMF of number of arrivals in n time slots: Binomial
- PMF of interarrival time: Geometric
- PMF of time to k^{th} arrival: Pascal
- Memorylessness

- What about continuous arrival times?
 Example: arrival to a bank.
The Poisson Process: Definition

- Let $P(k, \tau) =$ Probability of k arrivals in an interval of duration τ.

- Assumptions:
 - Number of arrivals in disjoint time intervals are independent.
 - For VERY small δ, we have:
 $$P(k, \delta) \approx \begin{cases}
 1 - \lambda \delta & \text{if } k = 0 \\
 \lambda \delta & \text{if } k = 1 \\
 0 & \text{if } k > 0
 \end{cases}$$
 - $\lambda =$ “arrival rate” of the process.
From Bernoulli to Poisson (1)

• Bernoulli: Arrival prob. in each time slot = \(p \)

• Poisson: Arrival probability in each \(\delta \) -interval = \(\lambda \delta \)

• Let \(n = t/\delta \) and \(p = \lambda \delta \):

\[
\text{Number of arrivals in a } t \text{-interval} = \text{Number of successes in } n \text{ time slots (Binomial)}
\]
From Bernoulli to Poisson (2)

\[\begin{align*}
1 & \quad p = \lambda \delta \\
0 & \quad n \to \infty \\
\delta \to 0 & \quad t = n \delta
\end{align*} \]

- Number of arrivals in a \(t \)-interval as \(n \to \infty \) =

\[
\binom{n}{k} p^k (1 - p)^{n-k} = \binom{n}{k} \left(\frac{\lambda t}{n} \right)^k \left(1 - \frac{\lambda t}{n} \right)^{n-k} \\
\overset{\text{Binomial}}{=} \frac{n!}{(n-k)! n^k} \left(\frac{\lambda t}{n} \right)^k \left(1 - \frac{\lambda t}{n} \right)^n \left(1 - \frac{\lambda t}{n} \right)^{-k} \quad \overset{\text{reorder terms}}{=} \left(\frac{\lambda t}{n} \right)^k \left(1 - \frac{\lambda t}{n} \right)^{-k} \left(1 \right) e^{-\lambda t} \overset{\text{Poisson}}{=} \frac{\lambda^k}{k!} e^{-\lambda t}
\]
PMF of Number of Arrivals

- N: number of arrivals in a τ-interval, thus:

$$P(N = k) = P(k, \tau) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!} \quad \text{(Poisson)}$$

$$k = 0, 1, \ldots$$

- **Mean:** $E[N] = \lambda \tau$

- **Variance:** $\text{Var}(N) = \lambda \tau$

- **Transform:** $M_N(s) = e^{\lambda \tau(e^s-1)}$
Email Example

- You get email according to a Poisson process, at a rate of $\lambda = 0.4$ messages per hour. You check your email every thirty minutes.

- Prob. of no new messages $= \frac{(.2)^0 e^{-.2}}{0!} = e^{-0.2}$

- Prob. of one new message $= \frac{(.2)^1 e^{-.2}}{1!} = .2e^{-0.2}$
• Y_1: time of the 1st arrival.

• "First order" interarrival time:
 \[f_{Y_1}(y) = \lambda e^{-\lambda y}, \quad y \geq 0 \] (Exponential)

• Why:
 \[P(Y_1 \leq y) = 1 - P(0, y) = 1 - e^{-\lambda y} \]
Interarrival Time

0 \quad \begin{array}{c}
\begin{array}{c}
\text{time}
\end{array}
\end{array}
\quad y

- **Fresh Start Property**: The time of the next arrival is independent from the past.

- **Memoryless property**: Suppose we observe the process for T seconds and no success occurred. Then the density of the remaining time for arrival is exponential.

- **Email Example**: You start checking your email. How long will you wait, in average, until you receive your next email? $E[Y_1] = \frac{1}{\lambda} = 2.5 \text{ hours}$
Time of k^{th} Arrival

- Y_k : time of the k^{th} arrival.

- $T_k = Y_k - Y_{k-1} \quad k = 2, 3, \ldots$: kth interarrival time

- It follows that:

$$Y_k = T_1 + T_2 + \ldots + T_k$$
Time of k^{th} Arrival

- Y_k: time of the k^{th} arrival.
- $f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}, \quad y \geq 0$ (Erlang) “of order k”
Bernoulli vs. Poisson

<table>
<thead>
<tr>
<th></th>
<th>Bernoulli</th>
<th>Poisson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Times of Arrival</td>
<td>Discrete</td>
<td>Continuous</td>
</tr>
<tr>
<td>Arrival Rate</td>
<td>p /per trial</td>
<td>λ /unit time</td>
</tr>
<tr>
<td>PMF of Number of Arrivals</td>
<td>Binomial</td>
<td>Poisson</td>
</tr>
<tr>
<td>PMF of Interarrival Time</td>
<td>Geometric</td>
<td>Exponential</td>
</tr>
<tr>
<td>PMF of k_{th} Arrival Time</td>
<td>Pascal</td>
<td>Erlang</td>
</tr>
</tbody>
</table>