1. **Example 9.1, page 463 in textbook**
 Romeo and Juliet start dating, but Juliet will be late on any date by a random amount X, uniformly distributed over the interval $[0, \theta]$. The parameter θ is unknown. Assuming that Juliet was late by an amount x on their first date, find the ML estimate of θ based on the observation $X = x$.

2. **Example 9.4, page 464 in textbook**
 Estimate the mean μ and variance ν of a normal distribution using n independent observations X_1, \ldots, X_n.

3. **Example 9.8, page 474 of textbook**
 We would like to estimate the fraction of voters supporting a particular candidate for office. We collect n independent sample voter responses X_1, \ldots, X_n, where X_i is viewed as a Bernoulli random variable, with $X_i = 1$ if the ith voter supports the candidate. We conducted a poll of 1200 people in North Carolina, and found that 684 were supporting the candidate. We would like to construct a 95% confidence interval for θ, the proportion of people who support the candidate. As we saw in lecture, using the central limit theorem, an (approximate) 95% confidence interval can be defined as
 \[
 \hat{\Theta}^- = \hat{\Theta}_n - 1.96 \sqrt{\frac{\nu}{n}}, \quad \hat{\Theta}^+ = \hat{\Theta}_n + 1.96 \sqrt{\frac{\nu}{n}}
 \]
 where $\nu = \text{Var}(X_i)$, and $\hat{\Theta}_n = (X_1 + \ldots + X_n)/n$. Unfortunately, we don’t know the value for ν. Construct confidence intervals for θ using the following three ways of estimating or bounding the value for ν (in each case simply assume that ν is equal to the given estimate; note that this is a further approximation in cases (a) and (b)).

 (a) \[
 \hat{S}_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \hat{\Theta}_n)^2
 \]

 (b) \[
 \hat{\Theta}_n (1 - \hat{\Theta}_n)
 \]

 (c) The most conservative upper bound for the variance.