LECTURE 18
Domain Specific Languages and Autotuning
Saman Amarasinghe
Domain Specific Languages

• Capture the programmer intent at a higher level of abstraction

• Obtain many software engineering benefits
 • clarity, portability, maintainability, testability, etc…

• Provide the compiler more opportunities for higher performance
 • Can encode expert knowledge of domain specific transformations
 • Better view of the computation performed without heroic analysis
 • Less low-level decisions by the programmer that has to be undone
Outline

• GraphIt

• Halide

• OpenTuner
void pagerank(Graph &graph, double * new_rank, double * old_rank, int * out_degree, int max_iter){
 for (i = 0; i < max_iter; i++) {
 for (src : graph.vertices()) {
 for (dst : graph.getOutgoingNeighbors(node)) {
 new_rank[dst] += old_rank[src]/out_degree[src]; }
 }
 }
 for (node : graph.vertices()) {
 new_rank[node] = base_score + damping*new_rank[node]; }
 swap (old_rank, new_rank); }
}
void pagerank(Graph &graph, double * new_rank, double * old_rank, int * out_degree, int max_iter){
for (i = 0; i < max_iter; i++) {
 for (src : graph.vertices()) {
 for (dst : graph.getOutgoingNeighbors(node)) {
 new_rank[dst] += old_rank[src]/out_degree[src];
 }
 }
 for (node : graph.vertices()) {
 new_rank[node] = base_score + damping*new_rank[node];
 }
 swap (old_rank, new_rank);
}
void pagerank(Graph &graph, double * new_rank, double * old_rank, int * out_degree, int max_iter) {
 for (i = 0; i < max_iter; i++) {
 for (src : graph.vertices()) {
 for (dst : graph.getOutgoingNeighbors(node)) {
 new_rank[dst] += old_rank[src] / out_degree[src];
 }
 }
 for (node : graph.vertices()) {
 new_rank[node] = base_score + damping*new_rank[node];
 }
 swap(old_rank, new_rank);
 }
}
template<typename APPLY_FUNC>
void edgeset_apply_pull_parallel(Graph &g, APPLY_FUNC apply_func) {
 int64_t numVertices = g.num_nodes(), numEdges = g.num_edges();
 parallel_for(int n = 0; n < numVertices; n++) {
 int socketId = 0; socketId < omp_get_num_places(); socketId++ {
 local_new_rank[socketId][n] = new_rank[n]; }
 int numPlaces = omp_get_num_places();
 int numSegments = g.getNumSegments("s1");
 int segmentsPerSocket = (numSegments + numPlaces - 1) / numPlaces;
 #pragma omp parallel num_threads(numPlaces) proc_bind(spread){
 int socketId = omp_get_place_num();
 for (int i = 0; i < segmentsPerSocket; i++) {
 #pragma omp parallel num_threads(omp_get_place_num_procs(socketId)) proc_bind(close){
 int segmentId = socketId + i * numPlaces;
 auto sg = g.getSegmentedGraph(std::string("s1"), segmentId);
 #pragma omp for schedule(dynamic, 1024)
 for(NodeID localId = 0; localId < sg.numVertices; localId++) {
 NodeID d = sg.graphId[localId];
 for(int64_t ngh = sg.vertexArray[localId]; ngh < sg.vertexArray[localId + 1]; ngh++) {
 NodeID s = sg.edgeArray[ngh];
 local_new_rank[socketId][d] += contrib[s]; }
 }
 }
 }
 parallel_for(int n = 0; n < numVertices; n++) {
 new_rank[n] += local_new_rank[socketId][n]; }
}

struct updateVertex {
 void operator() (NodeID v) {
 double old_score = old_rank[v];
 new_rank[v] = beta_score + (damp * new_rank[v]);
 error[v] = fabs(new_rank[v] - old_rank[v]);
 old_rank[v] = new_rank[v];
 new_rank[v] = ((float) 0) ; ;
 }
};

void pagerank(Graph &g, double *new_rank, double *old_rank, int *out_degree, int max_iter) {
 for (int i = 0; i < (max_iter); i++) {
 parallel_for(int v_iter = 0; v_iter < builtin_getVertices(edges); v_iter++) {
 contrib[v] = (old_rank[v] / out_degree[v]);
 edgeset_apply_pull_parallel(edges, updateEdge());
 parallel_for(int v_iter = 0; v_iter < builtin_getVertices(edges); v_iter++) {
 updateVertex()(v_iter); }
 }
 }

More than 23x faster
Intel Xeon E5-2695 v3 CPUs with 12 cores each for a total of 24 cores.

Multi-Threaded
Load Balanced
NUMA Optimized
Cache Optimized

(1) Hard to write correctly.
(2) Extremely difficult to experiment with different combinations of optimizations
Graph Algorithms

• What are the different types of graph algorithms
Topology-Driven Algorithms

Work on All Edges and Vertices
Data-Driven Algorithms
Data-Driven Algorithms
Data-Driven Algorithms

Work on a subset of vertices and edges
(Data-Driven)
Data-Driven Algorithms

Work on a subset of vertices and edges
(Data-Driven)
Graph Traversal

- Different Traversal Orders have different performance characteristics
Push Traversal

Incurs overhead with atomics
Traverses no extra edges
Pull Traversal

Incurs no overhead from atomics

Traverses extra edges
Partitioning

Improves locality

Needs extra instructions to traverse two graphs
Power-Law Graphs

World Wide Web

Power-Law Degree Distribution, Small Diameter, Poor Locality

Social Networks

Maps

© Google. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Engineering Meshes

This image is in the public domain.
Bounded-Degree Graphs

World Wide Web

Power-Law Degree Distribution,
Small Diameter, Poor Locality

Social Networks

Maps

Bounded Degree Distribution
Large Diameter, Excellent Locality

Engineering Meshes

© Google. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
Graphs

Hardware

Algorithms

Optimizations

Push

Vertex-Parallel
Bad optimizations (schedules) can be > 100x slower

Optimizations

Pull
Partitioning
Vertex-Parallel

Hardware

Algorithms

Graphs
GraphIt
A Domain-Specific Language for Graph Applications

• Decouple algorithm from optimization for graph applications

• **Algorithm**: What to Compute

 • **High level** ignores all the optimization details

• **Optimization (schedule)**: How to Compute

 • **Easy to use** for users to try different combinations

 • **Powerful enough** to beat hand-optimized libraries by up to 4.8x
Algorithm Language

edges.apply(func)

edges.from(vertexset).to(vertexset).srcFilter(func).dstFilter(func).apply(func)

vertices.apply(func)
func updateEdge (src: Vertex, dst: Vertex)
 new_rank[dst] += old_rank[src] / out_degree[src]
end

func updateVertex (v: Vertex)
 new_rank[v] = beta_score + 0.85*new_rank[v];
 old_rank[v] = new_rank[v];
 new_rank[v] = 0;
end

func main()
 for i in 1:max_iter
 #s1# edges.apply(updateEdge);
 vertices.apply(updateVertex);
 end
end
PageRank Example

```
func updateEdge (src: Vertex, dst: Vertex)
    new_rank[dst] += old_rank[src] / out_degree[src]
end

func updateVertex (v: Vertex)
    new_rank[v] = beta_score + 0.85*new_rank[v];
    old_rank[v] = new_rank[v];
    new_rank[v] = 0;
end

func main()
    for i in 1:max_iter
        edges.apply(updateEdge);
        vertices.apply(updateVertex);
    end
end
```
func updateEdge (src: Vertex, dst: Vertex)
 new_rank[dst] += old_rank[src] / out_degree[src]
end

func updateVertex (v: Vertex)
 new_rank[v] = beta_score + 0.85*new_rank[v];
 old_rank[v] = new_rank[v];
 new_rank[v] = 0;
end

func main()
 for i in 1:max_iter
 edges.apply(updateEdge);
 vertices.apply(updateVertex);
 end
end
GraphIt
A Domain-Specific Language for Graph Applications

- Decouple algorithm from optimization for graph applications

- **Algorithm**: What to Compute
 - **High level** ignores all the optimization details
func updateEdge (src: Vertex, dst: Vertex)
 new_rank[dst] += old_rank[src] / out_degree[src]
end

func updateVertex (v: Vertex)
 new_rank[v] = beta_score + 0.85*new_rank[v];
 old_rank[v] = new_rank[v];
 new_rank[v] = 0;
end

func main()
 for i in 1:max_iter
 edges.apply(updateEdge);
 vertices.apply(updateVertex);
 end
end
Scheduling Language

Algorithm Specification

```plaintext
func updateEdge (src: Vertex, dst: Vertex)
    new_rank[dst] += old_rank[src] / out_degree[src]
end

func updateVertex (v: Vertex)
    new_rank[v] = beta_score + 0.85*new_rank[v];
    old_rank[v] = new_rank[v];
    new_rank[v] = 0;
end

func main()
    for i in 1:max_iter
        #s1# edges.apply(updateEdge);
        vertices.apply(updateVertex);
    end
end
```
Schedule 1

Algorithm Specification

```
func updateEdge (src: Vertex, dst: Vertex)
    new_rank[dst] += old_rank[src] / out_degree[src]
end

func updateVertex (v: Vertex)
    new_rank[v] = beta_score + 0.85*new_rank[v];
    old_rank[v] = new_rank[v];
    new_rank[v] = 0;
end

func main()
    for i in 1:max_iter
        #s1# edges.apply(updateEdge);
        vertices.apply(updateVertex);
    end
end
```

Scheduling Functions

```
schedule:
    program->configApplyDirection("s1", "SparsePush");
```
Algorithm Specification

```plaintext
func updateEdge (src: Vertex, dst: Vertex)
    new_rank[dst] += old_rank[src] / out_degree[src]
end

func updateVertex (v: Vertex)
    new_rank[v] = beta_score + 0.85*new_rank[v];
    old_rank[v] = new_rank[v];
    new_rank[v] = 0;
end

func main()
    for i in 1:max_iter
        #s1# edges.apply(updateEdge);
        vertices.apply(updateVertex);
    end
end
```

Scheduling Functions

```plaintext
schedule:
    program->configApplyDirection("s1", "SparsePush");
```
Algorithm Specification

```plaintext
func updateEdge (src: Vertex, dst: Vertex)
    new_rank[dst] += old_rank[src] / out_degree[src]
end

func updateVertex (v: Vertex)
    new_rank[v] = beta_score + 0.85*new_rank[v];
    old_rank[v] = new_rank[v];
    new_rank[v] = 0;
end

func main()
    for i in 1:max_iter
        #s1# edges.apply(updateEdge);
        vertices.apply(updateVertex);
    end
end
```

Pseudo Generated Code

```plaintext
double * new_rank = new double[num_verts];
double * old_rank = new double[num_verts];
int * out_degree = new int[num_verts];

...

for (NodeID src : vertices) {
    for (NodeID dst : G.getOutNgh(src)) {
        new_rank[dst] += old_rank[src] / out_degree[src];
    }
}

....
```

Scheduling Functions

```plaintext
schedule:
    program->configApplyDirection("s1", "SparsePush");
```
Schedule 2

Algorithm Specification

```plaintext
func updateEdge (src: Vertex, dst: Vertex)
    new_rank[dst] += old_rank[src] / out_degree[src]
end

func updateVertex (v: Vertex)
    new_rank[v] = beta_score + 0.85*new_rank[v];
    old_rank[v] = new_rank[v];
    new_rank[v] = 0;
end

func main()
    for i in 1:max_iter
        #s1# edges.apply(updateEdge);
        vertices.apply(updateVertex);
    end
end
```

Pseudo Generated Code

```plaintext
double * new_rank = new double[num_verts];
double * old_rank = new double[num_verts];
int * out_degree = new int[num_verts];

...

parallel_for (NodeID src : vertices) {
    for(NodeID dst : G.getOutNgh(src)){
        atomic_add (new_rank[dst],
            old_rank[src] / out_degree[src] );
    }
}
...
```

Scheduling Functions

```plaintext
schedule:
    program->configApplyDirection("s1", "SparsePush");
    program->configApplyParallelization("s1", "dynamic-vertex-parallel");
```
Algorithm Specification

```python
func updateEdge (src: Vertex, dst: Vertex)
    new_rank[dst] += old_rank[src] / out_degree[src]
end

func updateVertex (v: Vertex)
    new_rank[v] = beta_score + 0.85*new_rank[v];
    old_rank[v] = new_rank[v];
    new_rank[v] = 0;
end

func main()
    for i in 1:max_iter
        #s1# edges.apply(updateEdge);
        vertices.apply(updateVertex);
    end
end
```

Pseudo Generated Code

```c
double * new_rank = new double[num_verts];
double * old_rank = new double[num_verts];
int * out_degree = new int[num_verts];

... parallel_for (NodeId dst : vertices) {
    for(NodeId src : G.getInNgh(dst)){
        new_rank[dst] += old_rank[src] / out_degree[src];
    }
}
...```

Scheduling Functions

```c
schedule:
 program->configApplyDirection("s1", "DensePull");
 program->configApplyParallelization("s1", "dynamic-vertex-parallel");
```
Algorithm Specification

```
func updateEdge (src: Vertex, dst: Vertex)
 new_rank[dst] += old_rank[src] / out_degree[src]
end

func updateVertex (v: Vertex)
 new_rank[v] = beta_score + 0.85*new_rank[v];
 old_rank[v] = new_rank[v];
 new_rank[v] = 0;
end

func main()
 for i in 1:max_iter
 #s1# edges.apply(updateEdge);
 vertices.apply(updateVertex);
 end
end
```

Pseudo Generated Code

```
double * new_rank = new double[num_verts];
double * old_rank = new double[num_verts];
int * out_degree = new int[num_verts];

...
for (Subgraph sg : G.subgraphs) {
 parallel_for (NodeID dst : vertexes) {
 for(NodeID src : G.getInNgh(dst)){
 new_rank[dst] += old_rank[src] / out_degree[src];
 }
 }
}
```

Scheduling Functions

```
schedule:
 program->configApplyDirection("s1", "DensePull");
 program->configApplyParallelization("s1", "dynamic-vertex-parallel");
 program->configApplyNumSSG("s1", "fixed-vertex-count", 10);
```
Speedups of Schedules

Intel Xeon E5-2695 v3 CPUs with 12 cores each for a total of 24 cores and 48 hyper-threads.
Many More Optimizations

- Direction optimizations (configApplyDirection),
  - SparsePush, DensePush, DensePull, DensePull-
    SparsePush, DensePush-SparsePush
- Parallelization strategies (configApplyParallelization)
  - serial, dynamic-vertex-parallel, static-vertexparallel,
    edge-aware-dynamic-vertex-parallel, edge-parallel
- Cache (configApplyNumSSG)
  - fixed-vertex-count, edge-aware-vertexcount
- NUMA (configApplyNUMA)
  - serial, static-parallel, dynamic-parallel
- AoS, SoA (fuseFields)
- Vertexset data layout (configApplyDenseVertexSet)
  - bitvector, boolean array
State of the Art and GraphIt

<table>
<thead>
<tr>
<th></th>
<th>PR</th>
<th>BFS</th>
<th>CC</th>
<th>SSSP</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Ligra</strong> (PPoPP13)</td>
<td>8.15</td>
<td>1.41</td>
<td>2.05</td>
<td>1.78</td>
</tr>
<tr>
<td><strong>GraphMat</strong> (VLDB15)</td>
<td>1.26</td>
<td>2.22</td>
<td>2.46</td>
<td>1.57</td>
</tr>
<tr>
<td><strong>GreenMarl</strong> (ASPLOS12)</td>
<td>1.08</td>
<td>1.93</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td><strong>GraphIt</strong> (OOPSLA18)</td>
<td>1.23</td>
<td>1.43</td>
<td>1</td>
<td>1.07</td>
</tr>
</tbody>
</table>

Intel Xeon E5-2695 v3 CPUs with 12 cores each for a total of 24 cores and 48 hyper-threads.
Halide

- A new language & compiler
  - Originally developed for image processing
  - Focuses on stencils on regular grids
  - Complex pipelines of stencil kernels
  - Support other operations like reductions and scans

- Primary goal
  - Match or exceed hand optimized performance on each architecture
  - Reduce the rote programming burden of highly optimized code
  - Increase the portability without loss of performance
A Simple Example: 3X3 Blur

void box_filter_3x3(const Image &in, Image &blury) {
    Image blurx(in.width(), in.height()); // allocate blurx array

    for (int y = 0; y < in.height(); y++)
        for (int x = 0; x < in.width(); x++)
            blurx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

    for (int x = 0; x < in.width(); x++)
        for (int y = 0; y < in.height(); y++)
            blury(x, y) = (blurx(x, y-1) + blurx(x, y) + blurx(x, y+1))/3;
void box_filter_3x3(const Image &in, Image &blury) {
    __m128i one_third = _mm_set1_epi16(21846);
    #pragma omp parallel for
    for (int yTile = 0; yTile < in.height(); yTile += 32) {
        __m128i a, b, c, sum, avg;
        __m128i blurx[(256/8)*32+2]; // allocate tile blurx array
        for (int xTile = 0; xTile < in.width(); xTile += 256) {
            __m128i *blurxPtr = blurx;
            for (int y = -1; y < 32+1; y++) {
                const uint16_t *inPtr = &in[yTile+y][xTile];
                for (int x = 0; x < 256; x += 8) {
                    a = _mm_loadu_si128((__m128i*)(inPtr-1));
                    b = _mm_loadu_si128((__m128i*)(inPtr+1));
                    c = _mm_load_si128((__m128i*)(inPtr));
                    sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
                    avg = _mm_mulhi_epi16(sum, one_third);
                    _mm_store_si128(blurxPtr++, avg);
                    inPtr += 8;
                }
                blurxPtr = blurx;
            }
            __m128i *outPtr = ( __m128i *)(&blury[yTile+y][xTile]);
            for (int x = 0; x < 256; x += 8) {
                a = _mm_loadu_si128(blurxPtr+(2*256)/8);
                b = _mm_loadu_si128(blurxPtr+256/8);
                c = _mm_loadu_si128(blurxPtr++);
                sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
                avg = _mm_mulhi_epi16(sum, one_third);
                _mm_store_si128(outPtr++, avg);
            }
        }
    }
}
Local Laplacian Filters

prototype for Adobe Photoshop Camera Raw / Lightroom

Reference: 300 lines C++

Adobe: 1500 lines
3 months of work
10x faster (vs. reference)

Halide: 60 lines
1 intern-day

20x faster (vs. reference)
2x faster (vs. Adobe)

GPU: 90x faster (vs. reference)
9x faster (vs. Adobe)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
Decouple Algorithm From Schedule

- **Algorithm**: *what* is computed
  - The algorithm defines pipelines as pure functions
  - Pipeline stages are functions from coordinates to values
  - Execution order and storage are unspecified

\[
\text{blurx}(x, y) = \frac{(\text{in}(x-1, y) + \text{in}(x, y) + \text{in}(x+1, y))}{3};
\]
\[
\text{blury}(x, y) = \frac{(\text{blurx}(x, y-1) + \text{blurx}(x, y) + \text{blurx}(x, y+1))}{3};
\]
Decouple Algorithm From Schedule

- **Algorithm**: what is computed
  - The algorithm defines pipelines as pure functions
  - Pipeline stages are functions from coordinates to values
  - Execution order and storage are unspecified

- **Schedule**: where and when it’s computed
  - Architecture Specific
  - Single, unified model for all schedules
  - Simple enough to search, expose to user
    Powerful enough to beat expert-tuned code
Stencil Pipelines Require Tradeoffs
Determined By Organization Of Computation

- Redundant Work
- Locality
- Parallelism

Tradeoff
Parallelism

- Need parallelism to keep multicores, vector units, clusters and GPUs busy
  - Too much parallelism is at best useless but can even be detrimental

- Example: Parallelism of on 3 cores
Locality

• Ones a data is touched, how quickly is it reused
• Faster reuse means better cache locality
• Locality at multiple levels: registers, L1, L2, LLC

Too little locality

Good Locality
Redundant Work

• Sometimes cannot get both locality and parallelism
• A little redundant computation can facilitate both
• Extra cost should be amortizable by the wins
Tradeoff Space Modeled By Granularity Of Interleaving

- **Coarse Interleaving**: Low locality, valid schedules, redundant work, redundant computation.
- **Fine Interleaving**: High locality, no redundant computation, storage granularity, parallelism.

**Compute Granularity**
- Coarse interleaving: Low locality.
- Fine interleaving: High locality.

**Storage Granularity**
- Redundant computation.
- No redundant computation.

**Valid Schedules**
- Redundant work.
- Locality.
- Parallelism.
Tradeoff Space Modeled By Granularity Of Interleaving

- coarse interleaving
  - low locality
- fine interleaving
  - high locality

**compute granularity**

- redundant computation
- no redundant computation

**storage granularity**

redundant work

locality

parallelism

blur_x.compute_at(root)
.store_at(root)
Tradeoff Space Modeled By Granularity Of Interleaving

coarse interleaving
low locality

compute granularity

fine interleaving
high locality

redundant computation

storage granularity

no redundant computation

blur_x.compute_at(blury, x)
.store_at(blury, x)

total fusion

redundant work
locality
parallelism

56

54

54
Tradeoff Space Modeled By Granularity Of Interleaving

- **coarse interleaving**
  - low locality
  - redundant computation
  - compute granularity

- **fine interleaving**
  - high locality
  - no redundant computation
  - storage granularity

- **compute granularity**
  - capturing reuse
  - constrains order
  - less parallelism

- **storage granularity**
  - no redundant computation

- **sliding window fusion**

- **blur_x.compute_at(blury, x)**

- **.store_at(root)**
Tradeoff Space Modeled By Granularity Of Interleaving

Coarse interleaving (low locality) vs. fine interleaving (high locality)
- Redundant computation
- Storage granularity
- Compute granularity

Tile-level fusion
- blur_y.tile(xo,yo,xi,yi,W,H)
- blur_x.compute_at(blury, xo)
  .compute_at(blury, xo)
Tradeoff Space Modeled By Granularity Of Interleaving

- coarse interleaving
  - low locality
  - compute granularity

- fine interleaving
  - high locality
  - fine-grained data-parallelism within windows

- redundant computation
  - coarse-grained parallelism across windows

- storage granularity

- enlarged sliding window
  - fine-grained data-parallelism within window

- parallel enlarged sliding windows

- no redundant computation
Schedule Primitives Compose To Create Many Organizations
The Bilateral Grid
[Chen et al. 2007]

An accelerated bilateral filter

Original: 122 lines of (clean) C++

Halide: 34 lines of algorithm

On the CPU, 5.9x faster

On the GPU, 2x faster than Chen’s hand-written CUDA version
“Snake” Image Segmentation

[Li et al. 2010]

Segments objects in an image using level-sets

Original: 67 lines of MATLAB

Halide: 148 lines of algorithm

On the CPU, 70x faster
MATLAB is memory-bandwidth limited

On the GPU, 1250x faster
Local Laplacian Filters
prototype for Adobe Photoshop Camera Raw / Lightroom

Reference: 300 lines C++

Adobe: 1500 lines
3 months of work
10x faster (vs. reference)

Halide: 60 lines
1 intern-day

20x faster (vs. reference)
2x faster (vs. Adobe)

GPU: 90x faster (vs. reference)
9x faster (vs. Adobe)
Real-World Adoption

Data center
Android
Browser
Glass
G Photos auto-enhance
HDR+
> 200 pipelines, 10s of kLOC in production

Photoshop in IOS

Front end language for the
Snapdragon Image Signal Processor

Halide touches every video uploaded.
65B frames/day
Performance Engineering is all about finding the right:
- block size in matrix multiply (voodoo parameters)
- strategy in the dynamic memory allocation project
- flags in calling GCC to optimize the program
- schedule in Halide
- schedule in GraphIt
How to find the right value

1. Model-Based
2. Heuristic-Based
3. Exhaustive Search
4. Autotuned (OpenTuner)
Come-up with a comprehensive model

- In this case, a model for the memory system and data reuse

**Pros:**
- Can explain exactly why we chose a given tile size
- “Optimal”

**Cons:**
- Hard to build models
- Cannot model everything
- Our model may miss an important component
2. Heuristic Based Solutions

“A rule of thumb” that works most of the time

- In this case, small two-to-the-power tile sizes works most of the time
- Hard-code them (eg: S = 8)

Pros

- Simple and easy to do
- Works most of the time

Cons

- Simplistic
- However, always suboptimal performance
- In some cases may be really bad
3. Exhaustive Search

Empirically evaluate all the possible values

· All possible integers for S

Pros:
· Will find the “optimal” value

Cons:
· Only for the inputs evaluated
· Can take a looooong time!
  ▪ Prune the search space
    ◆ Only integers that are powers-of-2 from vector register size to the cache size?
4. Autotuning based solutions

1. Define a space of acceptable values
2. Choose a value at random from that space
3. Evaluate the performance given that value
4. If satisfied, time limit exceeded → finish
5. Choose a new value from the feedback
6. Goto 3
Autotuning A Program

- Get a candidate value
- Compile the program
- Calculate Ave. execution time

T1.in  T2.in  T3.in  T4.in

P.exe T1.in  P.exe T2.in  P.exe T3.in  P.exe T4.in
Ensembles of techniques

• Many different techniques
• Each best suited to solve different problems
• Hard to write a single autotuner that performs well in different domains
• Can we make these techniques work together?
Ensembles of techniques

- Nelder-Mead Simplex (Hill climber)
- Differential Evolution
- Particle Swarm Optimization
- Model Driven Optimization

- AUC Bandit Meta-technique

- Meta-technique divides testing budget between sub-techniques
- Results are shared between all techniques
Autotuning GraphIt

Algorithm Specification

```plaintext
func updateEdge (src: Vertex, dst: Vertex)
 new_rank[dst] += old_rank[src] / out_degree[src]
end

func updateVertex (v: Vertex)
 new_rank[v] = beta_score + 0.85*new_rank[v];
 old_rank[v] = new_rank[v];
 new_rank[v] = 0;
end

func main()
 for i in 1:11
 #s1# edges.apply(updateEdge);
 vertices.apply(updateVertex);
 end
end
```

Finding the best schedule can be hard for non-experts.

Scheduling Functions

```plaintext
schedule:
 program->configApplyDirection("s1", "DensePull");
 program->configApplyParallelization("s1", "dynamic-vertex-parallel");
 program->configApplyNumSSG("s1", "fixed-vertex-count", 10);
```
Goal

Algorithm Specification

```go
cfunc updateEdge (src: Vertex, dst: Vertex)
 new_rank[dst] += old_rank[src] / out_degree[src]
end

cfunc updateVertex (v: Vertex)
 new_rank[v] = beta_score + 0.85*new_rank[v];
 old_rank[v] = new_rank[v];
 new_rank[v] = 0;
end

cfunc main()
 for i in 1:11
 edges.apply(updateEdge);
 vertices.apply(updateVertex);
 end
end
```

Ideally, the user only need to write the algorithm
Algorithm Specification

```
func updateEdge (src: Vertex, dst: Vertex)
 new_rank[dst] += old_rank[src] / out_degree[src]
end

func updateVertex (v: Vertex)
 new_rank[v] = beta_score + 0.85*new_rank[v];
 old_rank[v] = new_rank[v];
 new_rank[v] = 0;
end

func main()
 for i in 1:11
 edges.apply(updateEdge);
 vertices.apply(updateVertex);
 end
end
```

Scheduling Functions

```
schedule:
 program->configApplyDirection("s1", “DensePull”);
 program->configApplyParallelization("s1", “dynamic-vertex-parallel”);
 program->configApplyNumSSG("s1", “fixed-vertex-count”, 10);
```
Autotuner

A few weeks for exhaustive search

![Exhaustive Search Schedule Search Time](chart.png)
Autotuner

Uses an ensemble of search methods. Build on top of OpenTuner [PACT14]

A few weeks for exhaustive search

Schedule Search Time

Autotuner
Exhaustive Search

< 2 hrs

Hours

0
100
200
300
400
Autotuner finds a few schedules that outperform hand-tuned schedules.

A few weeks for exhaustive search

Schedule Search Time

- Autotuner
- Exhaustive Search

< 2 hrs

Hours