Outline

• What is a graph?
• Graph representations
• Implementing breadth-first search
• Graph compression/reordering
What is a graph?

- Vertices model objects
- Edges model relationships between objects

Image courtesy of STRING. Used under CC-BY.
What is a graph?

• **Edges can be directed**
 • Relationship can go one way or both ways

Image created by MIT OpenCourseWare.
What is a graph?

- Edges can be weighted
 - Denotes “strength”, distance, etc.

Distance between cities

Flight costs

© 2008–2018 by the MIT 6.172 Lecturers
What is a graph?

• Vertices and edges can have types and metadata

Google Knowledge Graph
SOME MORE APPLICATIONS OF GRAPHS
Social network queries

• **Examples:**
 - Finding all your friends who went to the same high school as you
 - Finding common friends with someone
 - Social networks recommending people whom you might know
 - Product recommendation
Finding good clusters

- Some applications
 - Finding people with similar interests
 - Detecting fraudulent websites
 - Document clustering
 - Unsupervised learning

- Finding groups of vertices that are “well-connected” internally and “poorly-connected” externally
More Applications

Connectomics
Image courtesy of Andreas Horn. Used under CC-BY.

- Study of the brain network structure

Image Segmentation

- Pixels correspond to vertices
- Edges between neighboring pixels with weight corresponding to similarity
GRAPH REPRESENTATIONS
Graph Representations

- Vertices labeled from 0 to n-1

```
0 1 0 0 0
1 0 0 1 1
0 0 0 1 0
0 1 1 0 0
0 1 0 0 0
```

Adjacency matrix

(“1” if edge exists, “0” otherwise)

- What is the space requirement for each in terms of number of edges (m) and number of vertices (n)?
Graph Representations

- **Adjacency list**
 - Array of pointers (one per vertex)
 - Each vertex has an unordered list of its edges

- **What is the space requirement?**
- **Can substitute linked lists with arrays for better cache performance**
 - Tradeoff: more expensive to update graph
Graph Representations

- Compressed sparse row (CSR)
 - Two arrays: Offsets and Edges
 - Offsets[i] stores the offset of where vertex i’s edges start in Edges

Vertex IDs 0 1 2 3
Offsets 0 4 5 11 ...
Edges 2 7 9 16 0 1 6 9 12 ...

- How do we know the degree of a vertex?
- Space usage?
- Can also store values on the edges with an additional array or interleaved with Edges
Tradeoffs in Graph Representations

What is the cost of different operations?

<table>
<thead>
<tr>
<th></th>
<th>Adjacency matrix</th>
<th>Edge list</th>
<th>Adjacency list</th>
<th>Compressed sparse row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage cost / scanning whole graph</td>
<td>O(n²)</td>
<td>O(m)</td>
<td>O(m+n)</td>
<td>O(m+n)</td>
</tr>
<tr>
<td>Add edge</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)/O(deg(v))</td>
<td>O(m+n)</td>
</tr>
<tr>
<td>Delete edge from vertex v</td>
<td>O(1)</td>
<td>O(m)</td>
<td>O(deg(v))</td>
<td>O(m+n)</td>
</tr>
<tr>
<td>Finding all neighbors of a vertex v</td>
<td>O(n)</td>
<td>O(m)</td>
<td>O(deg(v))</td>
<td>O(deg(v))</td>
</tr>
<tr>
<td>Finding if w is a neighbor of v</td>
<td>O(1)</td>
<td>O(m)</td>
<td>O(deg(v))</td>
<td>O(deg(v))</td>
</tr>
</tbody>
</table>

- There are variants/combinations of these representations
Graph Representations

• The algorithms we will discuss today are best implemented with compressed sparse row (CSR) format
 • Sparse graphs
 • Static algorithms—no updates to graph
 • Need to scan over neighbors of a given set of vertices
Properties of real–world graphs

- They can be big (but not too big)
- Sparse (m much less than n^2)
- Degrees can be highly skewed

Studies have shown that many real–world graphs have a power law degree distribution

\[\#\text{vertices with deg. } d \approx a \times d^{-p} \]
\(2 < p < 3\)
IMPLEMENTING A GRAPH ALGORITHM: BREADTH-FIRST SEARCH
Breadth-First Search (BFS)

- Given a source vertex s, visit the vertices in order of distance from s.

Possible outputs:

- Vertices in the order they were visited
 - D, B, C, E, A

- The distance from each vertex to s

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- A BFS tree, where each vertex has a parent to a neighbor in the previous level

Applications

- Betweenness centrality
- Eccentricity estimation
- Maximum flow
- Web crawlers
- Network broadcasting
- Cycle detection
 ...
Serial BFS Algorithm

Breadth-First-Search(Graph, root):

 for each node n in Graph:
 n.distance = INFINITY
 n.parent = NIL

Source: https://en.wikipedia.org/wiki/Breadth-first_search
Serial BFS Algorithm

- Assume graph is given in compressed sparse row format
- Two arrays: Offsets and Edges
- \(n \) vertices and \(m \) edges (assume \(\text{Offsets}[n] = m \))

```c
int* parent = (int*) malloc(sizeof(int)*n);
int* queue = (int*) malloc(sizeof(int)*n);

for(int i=0; i<n; i++) {
    parent[i] = -1;
}

queue[0] = source;
parent[source] = source;

int q_front = 0, q_back = 1;

//while queue not empty
while(q_front != q_back) {
    int current = queue[q_front++]; //dequeue
    int degree = Offsets[current+1]-Offsets[current];
    for(int i=0; i<degree; i++) {
        int ngh = Edges[Offsets[current]+i];
        //check if neighbor has been visited
        if(parent[ngh] == -1) {
            queue[0] = source; parent[ngh] = current;
            parent[source] = source;
            //enqueue neighbor
            queue[q_back++] = ngh;
        }
    }
}
```

- What is the most expensive part of the code?
 - Random accesses cost more than sequential accesses
Analyzing the program

```c
int* parent = (int*) malloc(sizeof(int)*n);
int* queue = (int*) malloc(sizeof(int)*n);

for(int i=0; i<n; i++) {
    parent[i] = -1;
}

queue[0] = source;
parent[source] = source;

int q_front = 0; q_back = 1;

while(q_front != q_back) {
    int current = queue[q_front++]; // dequeue
    int degree = Offsets[current+1]-Offsets[current];
    for(int i=0;i<degree; i++) {
        int ngh = Edges[Offsets[current]+i];
        //check if neighbor has been visited
        if(parent[ngh] == -1) {
            parent[ngh] = current;
            //enqueue neighbor
            queue[q_back++] = ngh;
        }
    }
}
```

- (Approx.) analyze number of cache misses (cold cache; cache size << n; 64 byte cache line size; 4 byte int)
 - n/16 for initialization
 - n/16 for dequeueing
 - n for accessing Offsets array
 - ≤ 2n + m/16 for accessing Edges array
 - m for accessing parent array

Total ≤ (51/16)n + (17/16)m
Analyzing the program

```c
int* parent = (int*) malloc(sizeof(int)*n);
int* queue = (int*) malloc(sizeof(int)*n);

for(int i=0; i<n; i++) {
    parent[i] = -1;
}

queue[0] = source;
parent[source] = source;

int q_front = 0; q_back = 1;
```

```c
//while queue not empty
while(q_front != q_back) {
    int current = queue[q_front++]; //dequeue
    int degree = Offsets[current+1]-Offsets[current];
    for(int i=0;i<degree; i++) {
        int ngh = Edges[Offsets[current]+i];
        //check if neighbor has been visited
        if(parent[ngh] == -1) {
            queue[q_back++] = ngh;
            //enqueue neighbor
            parent[ngh] = current;
        }
    }
}
```

- What if we can fit a bitvector of size n in cache?
 - Might reduce the number of cache misses
 - More computation to do bit manipulation

Check bitvector first before accessing parent array

\textit{n cache misses instead of m}
BFS with bitvector

```c
int* parent =
    (int*) malloc(sizeof(int)*n);
int* queue =
    (int*) malloc(sizeof(int)*n);
int nv = 1+n/32;
int* visited =
    (int*) malloc(sizeof(int)*nv);

for(int i=0; i<n; i++) {
    parent[i] = -1;
}

for(int i=0; i<nv; i++) {
    visited[i] = 0;
}

queue[0] = source;
parent[source] = source;
visited[source/32] = (1 << (source % 32));

int q_front = 0; q_back = 1;
```

```c
while(q_front != q_back) {
    int current = queue[q_front++]; //dequeue
    int degree =
        Offsets[current+1]-Offsets[current];
    for(int i=0;i<degree; i++) {
        int ngh = Edges[Offsets[current]+i];
        //check if neighbor has been visited
        if(!((1 << ngh%32) & visited[ngh/32])){
            visited[ngh/32] |= (1 << (ngh%32));
            parent[ngh] = current;
            //enqueue neighbor
            queue[q_back++] = ngh;
        }
    }
}
```

- Bitvector version is faster for large enough values of m
PARALLELIZING BREADTH-FIRST SEARCH
Parallel BFS Algorithm

- Can process each frontier in parallel
 - Parallelize over both the vertices and their outgoing edges
- Races, load balancing
Parallel BFS Code

BFS(Offsets, Edges, source) {
 parent, frontier, frontierNext, and degrees are arrays
 cilk_for(int i=0; i<n; i++) parent[i] = -1;
 frontier[0] = source, frontierSize = 1, parent[source] = source;

 while(frontierSize > 0) {
 cilk_for(int i=0; i<frontierSize; i++)
 degrees[i] = Offsets[frontier[i]+1] – Offsets[frontier[i]];
 perform prefix sum on degrees array
 cilk_for(int i=0; i<frontierSize; i++) {
 v = frontier[i], index = degrees[i], d = Offsets[v+1]–Offsets[v];
 for(int j=0; j<d; j++) { //can be parallel
 ngh = Edges[Offsets[v]+j];
 if(parent[ngh] == -1 && compare–and–swap(&parent[ngh], -1, v)) {
 frontierNext[index+j] = ngh;
 } else { frontierNext[index+j] = -1; }
 }
 }
 }

 filter out “-1” from frontierNext, store in frontier, and update frontierSize to be
 the size of frontier (all done using prefix sum)
}

© 2008–2018 by the MIT 6.172 Lecturers
BFS Work–Span Analysis

- Number of iterations \(\leq \) diameter \(D \) of graph
- Each iteration takes \(\Theta(\log m) \) span for cilk_for loops, prefix sum, and filter (assuming inner loop is parallelized)

\[
\text{Span} = \Theta(D \log m)
\]

- Sum of frontier sizes = \(n \)
- Each edge traversed once \(\rightarrow \) \(m \) total visits
- Work of prefix sum on each iteration is proportional to frontier size \(\rightarrow \) \(\Theta(n) \) total
- Work of filter on each iteration is proportional to number of edges traversed \(\rightarrow \) \(\Theta(m) \) total

\[
\text{Work} = \Theta(n+m)
\]
Performance of Parallel BFS

- Random graph with $n=10^7$ and $m=10^8$
 - 10 edges per vertex
- 40-core machine with 2-way hyperthreading

- 31.8x speedup on 40 cores with hyperthreading
- Serial BFS is 54% faster than parallel BFS on 1 thread
Golden Rule of Parallel Programming

Never write nondeterministic parallel programs.

They can exhibit anomalous behaviors, and it’s hard to debug them.
Silver Rule of Parallel Programming

Never write nondeterministic parallel programs — *but if you must* — always devise a test strategy to control the nondeterminism!

Typical test strategies
- Turn off nondeterminism.
- Encapsulate nondeterminism.
- Substitute a deterministic alternative.
- Use analysis tools.

E.g., for performance reasons.
Dealing with nondeterminism

BFS(Offsets, Edges, source) {
 parent, frontier, frontierNext, and degrees are arrays
 cilk_for(int i=0; i<n; i++) parent[i] = -1;
 frontier[0] = source, frontierSize = 1, parent[source] = source;

 while(frontierSize > 0) {
 cilk_for(int i=0; i<frontierSize; i++)
 degrees[i] = Offsets[frontier[i]+1] – Offsets[frontier[i]];
 perform prefix sum on degrees array
 cilk_for(int i=0; i<frontierSize; i++) {
 v = frontier[i], index = degrees[i], d = Offsets[v+1]–Offsets[v];
 for(int j=0; j<d; j++) {
 ngh = Edges[Offsets[v]+j];
 if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {
 frontierNext[index+j] = ngh;
 } else { frontierNext[index+j] = -1; }
 }
 }
 filter out “–1” from frontierNext, store in frontier, and update frontierSize to be the size of frontier (all done using prefix sum)
 }
}
Deterministic parallel BFS

writeMin(addr, newval):
 oldval = *addr
 while(newval < oldval):
 if(CAS(addr, oldval, newval)): return
 else: oldval = addr*

cilk_for(int i=0; i<frontierSize; i++) {
 v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
 for(int j=0; j<d; j++) {
 ngh = Edges[Offsets[v]+j];
 writeMin(&parent[ngh], v);
 }
}
cilk_for(int i=0; i<frontierSize; i++) {
 v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
 for(int j=0; j<d; j++) {
 ngh = Edges[Offsets[v]+j];
 if(parent[ngh] == v) {
 parent[ngh] = -v; //to avoid revisiting
 frontierNext[index+j] = ngh;
 } else {
 frontierNext[index+j] = -1;
 }
 }
 filter out "-1" from frontierNext, store in frontier, and update frontierSize

On 32 cores, (an optimized version of) deterministic BFS is 5—20% slower than nondeterministic BFS

Smallest value gets written

Check if "won"
DIRECTION–OPTIMIZING
BREADTH–FIRST SEARCH
Growth of frontiers

- For many graphs, frontier grows rapidly and then shrinks
- Most of the work done with frontier (and sum of out-degrees) is large
Two ways to do BFS

- Bottom-up is better when frontier is large and many vertices have been visited
 - Reduces number of edges traversed
- Top-down is better when frontier is small

Which one to use?
Direction-optimizing BFS

- Choose based on frontier size *(Idea by Beamer, Asanovic, and Patterson in Supercomputing 2012)*

Top-down

- Loop through frontier vertices and explore unvisited neighbors

- Efficient for small frontiers
- Updates to parent array is atomic

Bottom-up

for all vertices v in parallel:
 if parent[v] == -1:
 for all neighbors ngh of v:
 if ngh on frontier:
 parent[v] = ngh;
 place v on frontierNext;
 break;

- Efficient for larger frontiers
- Update to parent array need not be atomic

- Threshold of frontier size > n/20 works well in practice
- Can also consider sum of out-degrees
- Need to generate “inverse” graph if it is directed
Representing the frontier

• **Sparse integer array**
 - For example, [1, 4, 7]

• **Dense byte array**
 - For example, [0, 1, 0, 0, 1, 0, 0, 1] \((n=8) \)
 - Can further compress this by using 1 bit per vertex and using bit-level operations to access it

• Sparse representation used for top-down
• Dense representation used for bottom-up

• Need to convert between representations when switching methods
Direction-optimizing BFS performance

- Benefits highly dependent on graph
- No benefits if frontier is always small (e.g., on a grid graph or road network)
procedure EDGEMAP(G, frontier, Update, Cond):
 if (size(frontier) + sum of out-degrees > threshold) then:
 return EDGEMAP_DENSE(G, frontier, Update, Cond);
 else:
 return EDGEMAP_SPARSE(G, frontier, Update, Cond);

• More general than just BFS!
• Ligra framework generalizes direction-optimization to many other problems
 • For example, betweenness centrality, connected components, sparse PageRank, shortest paths, eccentricity estimation, graph clustering, k-core decomposition, set cover, etc.

GRAPH COMPRESSION AND REORDERING
Graph Compression on CSR

Vertex IDs

Offsets

Edges

Compressed Edges

Sort edges and encode differences

0 1 2 3

0 4 5 11

2 7 9 16 0 1 6 9 12

2 - 0 = 2 7 - 2 = 5 1 - 2 = -1

2 5 2 7 -1 -1 5 3 3

• For each vertex v:
 • First edge: difference is \(\text{Edges}[\text{Offsets}[v]] - v\)
 • i’th edge \((i>1)\): difference is \(\text{Edges}[\text{Offsets}[v]+i] - \text{Edges}[\text{Offsets}[v]+i-1]\)

• Want to use fewer than 32 or 64 bits to store each value

© 2008–2018 by the MIT 6.172 Lecturers
Variable-length codes

- **k-bit (variable-length) codes**
 - Encode value in chunks of k bits
 - Use k−1 bits for data, and 1 bit as the “continue” bit
- **Example: encode “401” using 8-bit (byte) codes**
- **In binary:**

 \[
 \begin{array}{cccccccc}
 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \1
 \end{array}
 \]

 - 7 bits for data
 - "continue" bit

- **Decoding is just encoding “backwards”**
 - Read chunks until finding a chunk with a “0” continue bit
 - Shift data values left accordingly and sum together
- **Branch mispredictions from checking continue bit**
Encoding optimization

- Another idea: get rid of “continue” bits

<table>
<thead>
<tr>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
<th>X₅</th>
<th>X₆</th>
<th>X₇</th>
<th>X₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Use run-length encoding

Number of bytes required to encode each integer

Header

Integers in group encoded in byte chunks

Number of bytes per integer

Size of group (max 64)

- Increases space, but makes decoding cheaper (no branch misprediction from checking “continue” bit)

© 2008–2018 by the MIT 6.172 Lecturers
Decoding on-the-fly

- Need to decode during the algorithm
 - If we decoded everything at the beginning we would not save any space!

- Each vertex decodes its edges sequentially
- What about high degree vertices?

In parallel, all vertices can decode their edges
Parallel decoding

High-degree vertex

Encoded first entry relative to source vertex

All chunks can be decoded in parallel!

Chunks of size T

T=100 to 10,000 works well in practice

Good compression for most graphs

- Space to store graph, which dominates the actual space usage for most graphs

Relative space compared to uncompressed graph

- Can further reduce space but need to ensure decoding is fast

Average space used relative to uncompressed
- Byte: 53%
- Byte-RLE: 56%
- Nibble: 49%

What is the cost of decoding on-the-fly?

- In parallel, compressed can outperform uncompressed
 - These graph algorithms are memory-bound and memory subsystem is a bottleneck in parallel (contention for resources)
 - Spends less time on memory operations, but has to decode
- Decoding has good speedup so overall speedup is higher
- All techniques integrated into Ligra framework

© 2008–2018 by the MIT 6.172 Lecturers
Graph Reordering

- Reassign IDs to vertices to improve locality
 - Goal: Make vertex IDs close to their neighbors’ IDs and neighbors’ IDs close to each other

```
4 -- 1 -- 3
|    |    |
0 -- 2 -- 5
```

Sum of differences = 21

```
0 -- 3 -- 4
|    |    |
1 -- 2 -- 5
```

Sum of differences = 19

- Can improve compression rate due to smaller “differences”
- Can improve performance due to higher cache hit rate
- Various methods: BFS, DFS, METIS, by degree, etc.
• Real-world graphs are large and sparse
• Many graphs algorithms are irregular and involve many memory accesses
• Improve performance with algorithmic optimizations and by creating/exploiting locality
• Optimizations may work for some graphs, but not others