PRODUCTION PLANNING

• Production Planning Issues/Goals
 - capacity planning/estimation
 - check feasibility of aggregate schedules
 - estimate delivery dates
 - translate long term goals into lower level task assignments

 e.g. how much capacity to devote to different product lines?

• Information Required
 - capacities @ all facilities
 - recipes for all products
 - yields
 - downgrading/binning data
 - inventories
 - sales projections (min & max)
 - price and cost data
Hierarchical Approach to handle disturbances/changes at each time-horizon
ASSUMPTIONS - LP & Front End Planning

1. Activities are activity levels on each route, measured as:
 - # wafers released
 - Quantity output (good die)
 ...can be alternative routes for each product type

2. Planning Horizon - multiple periods where demands, capacities, prod. rates \(\Rightarrow\) assumed constant.

3. Production Variable - quantity of product type to be released to a particular route
 Inventory Variable - inventory of product type at end of planning period
 Backorder Variable - die demand that cannot be satisfied on time at end of plan period

4. Demand - time-based die output requirements
 - May be in prioritized classes

5. Assume production is rate-based ... i.e., release quantity is distributed uniformly over period.

6. Capacity Constraints limit total workload on a machine type.

7. Steady State \(\Rightarrow\) constant rate production releases
• **GOAL:** Understand capacity limitations for various products in facilities with hundreds of machines.

• **CONVENTIONAL ASSUMPTION**
 - multiple identical machines
 - process steps assigned to unique machine type

 VS.

• **ALTERNATIVE CONSIDERATION**
 - may have different machine types that are all suitable for performing some operation

Examples:

• "**Mix & Match**" Lithography
 - expensive steppers may be able to handle the finest feature steps AND any others
 - less expensive steppers can only handle related feature steps

• Mixture of equipment technology generations
 - older tools for non-critical steps
 - newer tools for either
- **Benefits of alternative machines** - higher throughput and capacity utilization by balancing workload among alternative machine types.

- **So what's the big deal?**

 (A) Conventional LP formulation
 - define multiple possible routes/products
 - allocate capacity across these alternatives

 (B) Now add in alternative equipment types
 - 1 step product
 4 alt. eq. types
 \[\text{4 routes; } \Rightarrow \text{4 alloc. views} \]
 - 2 step product
 using step twice
 \[\text{16 routes; } \Rightarrow \text{16 alloc. views.} \]

 - With Re-entrant flows
 \[\Rightarrow \text{Combinatorial explosion} \]
 E.g. litho - 20 reactions

- **Return to goal:**

 Set company-wide demands to achieve capacity feasibility
 \[\Rightarrow \text{don't actually care about detailed routes!} \]
 ... use this to simplify the LP problem form.
• BASIC IDEAS / FORMULATIONS

1. "STEP-SEPARATED FORMULATION"
 - replace variables for ROUTES with variables for ACTIVITY at operations
 - ∀ product, oper → allocation vars ≤ alternative machines

2. "WORKLOAD ALLOCATION FORMULATION"
 - Assume process times identical across all alternative types, or proportional across all operations
 - e.g. type 2 machines are 3x slower than type 1 machines for any & all ops that both can perform
 - THEN
 - ∀ product → total workload
 - ... ignore workload for individual steps

3. "DIRECT PRODUCT MIX FORMULATION"
 - No allocation vars: just vars for the production of each product
 - => same size as LP conventional planning formulation w/o alternative resources