18. Solutions to (some of) the problems

Solution 18.1 (To Problem 10). (by Matjaž Konvalinka).

Since the topology on \(\mathbb{N} \), inherited from \(\mathbb{R} \), is discrete, a set is compact if and only if it is finite. If a sequence \(\{x_n\} \) (i.e. a function \(\mathbb{N} \to \mathbb{C} \)) is in \(C_0(\mathbb{N}) \) if and only if for any \(\epsilon > 0 \) there exists a compact (hence finite) set \(F_\epsilon \) so that \(|x_n| < \epsilon \) for any \(n \) not in \(F_\epsilon \). We can assume that \(F_\epsilon = \{1, \ldots, n_\epsilon\} \), which gives us the condition that \(\{x_n\} \) is in \(C_0(\mathbb{N}) \) if and only if it converges to 0. We denote this space by \(c_0 \), and the supremum norm by \(\| \cdot \|_0 \). A sequence \(\{x_n\} \) will be abbreviated to \(x \).

Let \(l^1 \) denote the space of (real or complex) sequences \(x \) with a finite \(1 \)-norm
\[
\|x\|_1 = \sum_{n=1}^{\infty} |x_n|.
\]
We can define pointwise summation and multiplication with scalars, and \((l^1, \| \cdot \|_1) \) is a normed (in fact Banach) space. Because the functional
\[
y \mapsto \sum_{n=1}^{\infty} x_n y_n
\]
is linear and bounded (\(|\sum_{n=1}^{\infty} x_n y_n| \leq \sum_{n=1}^{\infty} |x_n||y_n| \leq \|x\|_0 \|y\|_1 \)) by \(\|x\|_0 \), the mapping
\[
\Phi: l^1 \to c_0^*
\]
deefined by
\[
x \mapsto \left(y \mapsto \sum_{n=1}^{\infty} x_n y_n \right)
\]
is a (linear) well-defined mapping with norm at most 1. In fact, \(\Phi \) is an isometry because if \(|x_j| = \|x\|_0 \) then \(|\Phi(x)(e_j)| = 1 \) where \(e_j \) is the \(j \)-th unit vector. We claim that \(\Phi \) is also surjective (and hence an isometric isomorphism). If \(\varphi \) is a functional on \(c_0 \) let us denote \(\varphi(e_j) \) by \(x_j \). Then \(\Phi(x)(y) = \sum_{n=1}^{\infty} \varphi(e_n) y_n = \sum_{n=1}^{\infty} \varphi(y_n e_n) = \varphi(y) \) (the last equality holds because \(\sum_{n=1}^{\infty} y_n e_n \) converges to \(y \) in \(c_0 \) and \(\varphi \) is continuous with respect to the topology in \(c_0 \)).

Solution 18.2 (To Problem 29). (Matjaž Konvalinka) Since
\[
D_x H(\varphi) = H(-D_x \varphi) = i \int_{-\infty}^{\infty} H(x) \varphi'(x) \, dx = \ni \int_{0}^{\infty} \varphi'(x) \, dx = i(0 - \varphi(0)) = -i\delta(\varphi),
\]
we get \(D_x H = C\delta \) for \(C = -i \).
Solution 18.3 (To Problem 40). (Matjaž Konvalinka) Let us prove this in the case where $n = 1$. Define (for $b \neq 0$)

\[U(x) = u(b) - u(x) - (b - x)u'(x) - \ldots - \frac{(b - x)^{k-1}}{(k-1)!} u^{(k-1)}(x); \]
then

\[U'(x) = - \frac{(b - x)^{k-1}}{(k-1)!} u^{(k)}(x). \]

For the continuously differentiable function $V(x) = U(x) - (1-x/b)^k U(0)$ we have $V(0) = V(b) = 0$, so by Rolle’s theorem there exists ζ between 0 and b with

\[V'(\zeta) = U'(\zeta) + \frac{k(b-\zeta)^{k-1}}{b^k} U(0) = 0. \]

Then

\[U(0) = - \frac{b^k}{k(b-\zeta)^{k-1}} U'(\zeta), \]

\[u(b) = u(0) + u'(0)b + \ldots + \frac{u^{(k-1)}(0)}{(k-1)!} b^{k-1} + \frac{u^{(k)}(\zeta)}{k!} b^k. \]

The required decomposition is $u(x) = p(x) + v(x)$ for

\[p(x) = u(0) + u'(0)x + \frac{u''(0)}{2!} x^2 + \ldots + \frac{u^{(k-1)}(0)}{(k-1)!} x^{k-1} + \frac{u^{(k)}(0)}{k!} x^k, \]

\[v(x) = u(x) - p(x) = \frac{u^{(k)}(\zeta) - u^{(k)}(0)}{k!} x^k, \]

for ζ between 0 and x, and since $u^{(k)}$ is continuous, $(u(x) - p(x))/x^k$ tends to 0 as x tends to 0.

The proof for general n is not much more difficult. Define the function $w_x: I \to \mathbb{R}$ by $w_x(t) = u(tx)$. Then w_x is k-times continuously differentiable,

\[w'_x(t) = \sum_{i=1}^n \frac{\partial u}{\partial x_i}(tx)x_i, \]

\[w''_x(t) = \sum_{i,j=1}^n \frac{\partial^2 u}{\partial x_i \partial x_j}(tx)x_i x_j, \]

\[w^{(l)}_x(t) = \sum_{l_1 + l_2 + \ldots + l_i = l} \frac{l!}{l_1! l_2! \ldots l_i!} \frac{\partial^l u}{\partial x_1^{l_1} \partial x_2^{l_2} \ldots \partial x_i^{l_i}}(tx)x_1^{l_1} x_2^{l_2} \ldots x_i^{l_i}. \]
so by above \(u(x) = w_x(1) \) is the sum of some polynomial \(p \) (of degree \(k \)), and we have

\[
\frac{u(x) - p(x)}{|x|^k} = \frac{v_x(1)}{|x|^k} = \frac{w_x^{(k)}(\zeta_x)}{k!|x|^k},
\]

so it is bounded by a positive combination of terms of the form

\[
\frac{\partial^l u}{\partial x_1^i \partial x_2^j \cdots \partial x_l^k}(\zeta_x) - \frac{\partial^l u}{\partial x_1^i \partial x_2^j \cdots \partial x_l^k}(0)
\]

with \(l_1 + \ldots + l_i = k \) and \(0 < \zeta_x < 1 \). This tends to zero as \(x \to 0 \) because the derivative is continuous.

Solution 18.4 (Solution to Problem 41). (Matjaž Konvalinka) Obviously the map \(C_0(\mathbb{B}^n) \to C(\mathbb{B}^n) \) is injective (since it is just the inclusion map), and \(f \in C(\mathbb{B}^n) \) is in \(C_0(\mathbb{B}^n) \) if and only if it is zero on \(\partial \mathbb{B}^n \), i.e., if and only if \(f|_{\mathbb{S}^{n-1}} = 0 \). It remains to prove that any map \(g \) on \(\mathbb{S}^{n-1} \) is the restriction of a continuous function on \(\mathbb{B}^n \). This is clear since

\[
f(x) = \begin{cases}
|x|g(x/|x|) & x \neq 0 \\
0 & x = 0
\end{cases}
\]

is well-defined, coincides with \(f \) on \(\mathbb{S}^{n-1} \), and is continuous: if \(M \) is the maximum of \(|g| \) on \(\mathbb{S}^{n-1} \), and \(\epsilon > 0 \) is given, then \(|f(x)| < \epsilon \) for \(|x| < \epsilon/M \).

Solution 18.5. (partly Matjaž Konvalinka)

For any \(\varphi \in \mathcal{S}(\mathbb{R}) \) we have

\[
|\int_{-\infty}^{\infty} \varphi(x)dx| \leq \int_{-\infty}^{\infty} |\varphi(x)|dx \leq \sup((1+|x|^2)|\varphi(x)|) \int_{-\infty}^{\infty} (1+|x|^2)^{-1}dx \leq C \sup((1+|x|^2)|\varphi(x)|).
\]

Thus \(\mathcal{S}(\mathbb{R}) \ni \varphi \mapsto \int_{\mathbb{R}} \varphi dx \) is continuous.

Now, choose \(\phi \in C_c^{\infty}(\mathbb{R}) \) with \(\int_{\mathbb{R}} \phi(x)dx = 1 \). Then, for \(\psi \in \mathcal{S}(\mathbb{R}) \), set

\[
A\psi(x) = \int_{-\infty}^{x} (\psi(t) - c(\psi)\phi(t)) \, dt,
\]

\[
c(\psi) = \int_{-\infty}^{\infty} \psi(s) \, ds.
\]

Note that the assumption on \(\phi \) means that

\[
A\psi(x) = - \int_{x}^{\infty} (\psi(t) - c(\psi)\phi(t)) \, dt
\]

Clearly \(A\psi \) is smooth, and in fact it is a Schwartz function since

\[
\frac{d}{dx}(A\psi(x)) = \psi(x) - c\phi(x) \in \mathcal{S}(\mathbb{R})
\]
so it suffices to show that $x^k A \psi$ is bounded for any k as $|x| \to \pm \infty$. Since $\psi(t) - c \phi(t) \leq C_k t^{-k-1}$ in $t \geq 1$ it follows from (18.2) that
\[
|x^k A \psi(x)| \leq C x^k \int_x^\infty t^{-k-1} dt \leq C', \quad k > 1, \quad \text{in } x > 1.
\]
A similar estimate as $x \to -\infty$ follows from (18.1). Now, A is clearly linear, and it follows from the estimates above, including that on the integral, that for any k there exists C and j such that
\[
\sup_{\alpha, \beta \leq k} |x^\alpha D^\beta A \psi| \leq C \sum_{\alpha', \beta \leq j} \sup_{x \in \mathbb{R}} |x^{\alpha'} D^\beta \psi|.
\]
Finally then, given $u \in \mathcal{S}'(\mathbb{R})$ define $v(\psi) = -u(A \psi)$. From the continuity of A, $v \in \mathcal{S}(\mathbb{R})$ and from the definition of A, $A(\psi') = \psi$. Thus
\[
dv/dx(\psi) = v(-\psi') = u(A\psi') = u(\psi) \implies dv/dx = u.
\]

Solution 18.6. We have to prove that $\langle \xi \rangle^{m+m'} \hat{u} \in L^2(\mathbb{R}^n)$, in other words, that
\[
\int_{\mathbb{R}^n} \langle \xi \rangle^{2(m+m')} |\hat{u}|^2 d\xi < \infty.
\]
But that is true since
\[
\int_{\mathbb{R}^n} \langle \xi \rangle^{2(m+m')} |\hat{u}|^2 d\xi = \int_{\mathbb{R}^n} \langle \xi \rangle^{2m'} (1 + \xi_1^2 + \ldots + \xi_n^2)^m |\hat{u}|^2 d\xi =
\]
\[
\int_{\mathbb{R}^n} \langle \xi \rangle^{2m'} \left(\sum_{|\alpha| \leq m} C_\alpha \xi^{2\alpha} \right) |\hat{u}|^2 d\xi = \sum_{|\alpha| \leq m} C_\alpha \left(\int_{\mathbb{R}^n} \langle \xi \rangle^{2m'} \xi^{2\alpha} |\hat{u}|^2 d\xi \right)
\]
and since $\langle \xi \rangle^{m'} \xi^{2\alpha} \hat{u} = \langle \xi \rangle^{m'} \hat{D}^{\alpha} u$ is in $L^2(\mathbb{R}^n)$ (note that $u \in H^m(\mathbb{R}^n)$ follows from $D^m u \in H^m(\mathbb{R}^n)$), $|\alpha| \leq m$). The converse is also true since C_α in the formula above are strictly positive.

Solution 18.7. Take $v \in L^2(\mathbb{R}^n)$, and define subsets of \mathbb{R}^n by
\[
E_0 = \{ x : |x| \leq 1 \},
\]
\[
E_i = \{ x : |x| \geq 1, |x| = \max_j |x_j| \}.
\]
Then obviously we have $1 = \sum_{i=0}^{n} \chi_{E_i}$ a.e., and $v = \sum_{j=0}^{n} v_j$ for $v_j = \chi_{E_j} v$. Then $\langle x \rangle$ is bounded by $\sqrt{2}$ on E_0, and $\langle x \rangle v_0 \in L^2(\mathbb{R}^n)$; and on E_j, $1 \leq j \leq n$, we have
\[
\frac{\langle x \rangle}{|x_j|} \leq \frac{(1 + n|x_j|^2)^{1/2}}{|x_j|} = (n + 1/|x_j|^2)^{1/2} \leq (2n)^{1/2},
\]
so \(\langle x \rangle v_j = x_j w_j \) for \(w_j \in L^2(\mathbb{R}^n) \). But that means that \(\langle x \rangle v = w_0 + \sum_{j=1}^{n} x_j w_j \) for \(w_j \in L^2(\mathbb{R}^n) \).

If \(u \) is in \(L^2(\mathbb{R}^n) \) then \(\hat{u} \in L^2(\mathbb{R}^n) \), and so there exist \(w_0, \ldots, w_n \in L^2(\mathbb{R}^n) \) so that

\[
\langle \xi \rangle \hat{u} = w_0 + \sum_{j=1}^{n} \xi_j w_j,
\]

in other words

\[
\hat{u} = \hat{u}_0 + \sum_{j=1}^{n} \xi_j \hat{v}_j
\]

where \(\langle \xi \rangle \hat{v}_j \in L^2(\mathbb{R}^n) \). Hence

\[
u = u_0 + \sum_{j=1}^{n} D_j u_j
\]

where \(u_j \in H^1(\mathbb{R}^n) \).

Solution 18.8. Since

\[
D_x H(\varphi) = H(-D_x \varphi) = i \int_{-\infty}^{\infty} H(x) \varphi'(x) \, dx = i \int_{0}^{\infty} \varphi'(x) \, dx = i(0-\varphi(0)) = -i \delta(\varphi),
\]

we get \(D_x H = C \delta \) for \(C = -i \).

Solution 18.9. It is equivalent to ask when \(\langle \xi \rangle^m \hat{\delta}_0 \) is in \(L^2(\mathbb{R}^n) \). Since

\[
\hat{\delta}_0(\psi) = \delta_0(\hat{\psi}) = \hat{\psi}(0) = \int_{\mathbb{R}^n} \psi(x) \, dx = 1(\psi),
\]

this is equivalent to finding \(m \) such that \(\langle \xi \rangle^{2m} \) has a finite integral over \(\mathbb{R}^n \). One option is to write \(\langle \xi \rangle = (1 + r^2)^{1/2} \) in spherical coordinates, and to recall that the Jacobian of spherical coordinates in \(n \) dimensions has the form \(r^{n-1} \Psi(\varphi_1, \ldots, \varphi_{n-1}) \), and so \(\langle \xi \rangle^{2m} \) is integrable if and only if

\[
\int_{0}^{\infty} \frac{r^{n-1}}{(1 + r^2)^m} \, dr
\]

converges. It is obvious that this is true if and only if \(n - 1 - 2m < -1 \), i.e., if and only if \(m > n/2 \).

Solution 18.10 (Solution to Problem 31). We know that \(\delta \in H^m(\mathbb{R}^n) \) for any \(m < -n/1 \). Thus is just because \(\langle \xi \rangle^p \in L^2(\mathbb{R}^n) \) when \(p < -n/2 \).

Now, divide \(\mathbb{R}^n \) into \(n + 1 \) regions, as above, being \(A_0 = \{ \xi ; |\xi| \leq 1 \} \) and \(A_i = \{ \xi ; |\xi| = \sup_j |\xi_j|, |\xi| \geq 1 \} \). Let \(v_0 \) have Fourier transform \(\chi_{A_0} \) and for \(i = 1, \ldots, n, \) \(v_i \in S; (\mathbb{R}^n) \) have Fourier transforms \(\xi_i^{n-1} \chi_{A_i} \).

Since \(|\xi_i| > c(\xi) \) on the support of \(\hat{v}_i \) for each \(i = 1, \ldots, n \), each term
is in H^m for any $m < 1 + n/2$ so, by the Sobolev embedding theorem, each $v_i \in C^0_0(\mathbb{R}^n)$ and

$$1 = \hat{v}_0 \sum_{i=1}^{n} \xi_i^{n+1} \hat{v}_i \implies \delta = v_0 + \sum_i D_i^{n+1} v_i. \quad (18.4)$$

How to see that this cannot be done with n or less derivatives? For the moment I do not have a proof of this, although I believe it is true. Notice that we are actually proving that δ can be written

$$\delta = \sum_{|\alpha| \leq n+1} D^\alpha u_\alpha, \ u_\alpha \in H^{n/2}(\mathbb{R}^n). \quad (18.5)$$

This cannot be improved to n from $n + 1$ since this would mean that $\delta \in H^{-n/2}(\mathbb{R}^n)$, which it isn’t. However, what I am asking is a little more subtle than this.