2.141 | Fall 2006 | Graduate

Modeling and Simulation of Dynamic Systems

Lecture Notes

Introduction and Review

Subject Introduction (PDF)

Cable Hoist Example (PDF 1) (PDF 2)

Bond Graph Primitives (PDF - 1.0 MB)

DCPMM Basics (PDF)

Block Diagrams and Bond Graphs (PDF)

Pump Model (PDF 1) (PDF 2)


Electromagnetism (PDF)

Solenoid (PDF)

Solenoid and Co-energy (PDF)

Solenoid and DCPMM (PDF)

Multiport Capacitor (PDF)

Thermal Systems

Work-to-heat Transduction (PDF)

Ideal Gas (PDF)

Heat Transfer (PDF)

Thermal Damping (PDF)

Entropy Production (PDF)

Linearized Thermal Damping Model (PDF)
Linearization to articulate the structure of the thermal damping model.

Nonlinear Mechanical Systems

Kinematic Transformations (PDF)
Effect of displacement-modulated transformers on inertia, damping and stiffness.

Interaction Control (PDF)

Lagrange Derivation (PDF)
A derivation of Lagrange’s equation with variational calculus.

Lagrange Continued (PDF)
The modern addition of conservative forces to the Euler-Lagrange equation.

Modulated Transformers (PDF)
Kinematic constraints in mechanical systems.

Transmission Lines and Wave-Like Behavior

Transmission Line Models (PDF)
An alternative formulation of simple models of power transmission lines which may exhibit wave behavior.

Symmetric Junctions (PDF)
Derivation of zero and one Junctions via scattering variables.

Asymmetric Junctions (PDF)
Derivation of gyrator and transformer via scattering variables.


Bipolar Transistor Amplifier (PDF)
Analysis of a bipolar transistor showing that (1) amplification is a non-equilibrium phenomenon and (2) the transistor amplifier contains a “hidden” gyrator.

Nodicity (PDF)
An important behavior of electrical networks generally not found in other domains.

Capstan Amplifier (PDF)
An example of amplification by modulating a resistor.

Matter Transport

Bernoulli “Resistor” (PDF)

Pseudo and Convection Bonds (PDF)
A brief comparison of alternative network representations of matter transport.

Convection (PDF 1) (PDF 2)

Hamiltonian Forms

Hamilton and Lagrange (PDF)

Interaction Stability (PDF)

Canonical Transformations (PDF)

Hamilton-Jacobi Theory (PDF)

Transformation and Integration (PDF)

Course Info

As Taught In
Fall 2006