First Hour Exam 5.111

Write your name and your TA’s name below. **Do not open the exam until the start of the exam is announced.** The exam is closed notes and closed book.

1. Read each part of each problem carefully and thoroughly.
2. Read all parts of each problem. **MANY OF THE LATTER PARTS OF A PROBLEM CAN BE SOLVED WITHOUT HAVING SOLVED EARLIER PARTS.** However, if you need a numerical result that you were not successful in obtaining for the computation of a latter part, make a physically reasonable approximation for that quantity (and indicate it as such) and use it to solve the latter parts.
3. A problem that requests you to “calculate” implies that several calculation steps may be necessary for the problem’s solution. You must show these steps clearly and indicate all values, including physical constants used to obtain your quantitative result. **Significant figures** and **units** must be correct.
4. If you don’t understand what the problem is requesting, raise your hand and a proctor will come to your desk.
5. Physical constants, formulas and a periodic table are given on the last page. You may detach this page **once the exam has started.**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(16 points) _____________</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>(20 points) _____________</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>(10 points) _____________</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>(20 points) _____________</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>(16 points) _____________</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>(18 points) _____________</td>
<td></td>
</tr>
</tbody>
</table>

Total (100 points) ______________

Name _________________________________

TA _________________________________
1. (16 points) **Photoelectric effect**

(a) (8 points) The workfunction for chromium metal is 4.37 eV.

(i) Calculate the **frequency** of light required to eject electrons with a kinetic energy of 0.66 eV.

(ii) Is the frequency calculated in part (i) a **minimum** or a **maximum** frequency requirement for an electron to be ejected with at least 0.66 eV?

(b) (8 points) Put an X through any of the graphs below that incorrectly depict the relationship between the incident light and the electrons (e−’s) ejected from the surface of a metal in the photoelectric effect.

- **Graph 1:** K.E. of e−’s vs. energy of light (Correct)
- **Graph 2:** K.E. of e−’s vs. frequency of light (Correct)
- **Graph 3:** # of ejected e−’s vs. intensity of light (at constant v) (Correct)
- **Graph 4:** # of ejected e−’s vs. frequency of light (Incorrect)
2. (20 points) **Binding energies and transitions**

For the B$^{4+}$ ion

(a) (12 points) Calculate the **binding energy** to three significant figures of an electron for the (i) ground state and (ii) second excited state. (iii) Calculate the energy difference between these two states.

(b) (4 points) If an electron falls from the n=3 to n=1 state, calculate the wavelength of light emitted.
(c) (4 points) Without doing any calculations, would you expect that an electron in the ground state of Li\(^{2+}\) is bound more tightly or less tightly than an electron in the ground state of B\(^{4+}\). Explain your answer.

3. (10 points) Waves
Calculate the wavelength of an electron that has a kinetic energy of \(1.5 \times 10^{-18}\) J.
4. (20 points) **Multi-electron atoms**

(a) (2 points) The binding energy of a calcium 4s electron is -6.1 eV. What is the ionization energy, IE, for this 4s electron (in eV)?

(b) (8 points) The binding energy of a calcium 2p electron is -349.7 eV. Calculate the effective nuclear charge experienced by a calcium 2p electron.

(c) (10 points) On the plot below,

(i) Graph the radial probability distribution for a 2s orbital (as a solid line) and a 2p orbital (as a dashed line). Label the axes, but do not include numbers or units.

(ii) Label the \(r_{np} \) for each orbital, and indicate any nodes with an arrow.

(iii) Would a 2s electron feel more or less shielding than a 2p electron? Briefly explain your answer.
5. (16 points) **Electron configurations and quantum numbers**

(a) (12 points) Fill in the electron configuration expected for the following atoms or ions. *(You may use the noble gas configuration as a means to abbreviate the full configuration).*

(i) Po (Z = 84)

(ii) Ag (Z = 47)

(b) (4 points) Determine the number of orbitals in a single atom that can have the following two quantum numbers: n = 4, m_l = -2

6. (18 points) **Balancing equations and stoichiometry**

Tristearin (C_{57}H_{110}O_6) can be combusted in the presence of oxygen.

\[\text{___ C}_{57}\text{H}_{110}\text{O}_6(s) + \text{___ O}_2(g) \rightarrow \text{___ CO}_2(g) + \text{___ H}_2\text{O}(l) \]

(a) (4 points) Balance the above equation for the combustion of tristearin.

(b) (7 points) What mass of water is produced from 1.00 lb (454 g) of tristearin?

(c) (7 points) What mass of oxygen is needed to fully react with 1.00 lb of tristearin?
Periodic Table with constants and equations for Exam 1:

- **c** = 2.9979×10^8 m/s
- **h** = 6.6261×10^{-34} J s
- **N_A** = 6.022×10^{23} mol$^{-1}$
- **m_e** = 9.1094×10^{-31} kg
- **a_o** = 5.292×10^{-11} m
- **1 amu = 1.66 \times 10^{-27}$$ kg$
- **R_H** = 2.1799×10^{-18} J
- **\Re** = $\frac{R_H}{h} = 3.2898 \times 10^{15}$ Hz

<table>
<thead>
<tr>
<th>n</th>
<th>$E_n = -\frac{Z^2R_H}{n^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$E_{nl} = -\frac{Z_{\text{eff}}^2R_H}{n^2}$</td>
</tr>
</tbody>
</table>

- **1 W** = 1 J s$^{-1}$
- **1 J** = 1 kgm2s$^{-2}$
- **1 eV** = 1.6022×10^{-19} J

- **E** = $hv = hc/\lambda$
- **c** = $\nu \lambda$
- **KE** = $(\frac{1}{2})mv^2$
- **p** = mv
- **λ** = $\frac{h}{p}$

For s wavefunction:

- **RPD** = $4\pi^2\Psi^2dr$

For $n_f < n_i$:

\[
v = \frac{Z^2R_H}{h} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)
\]

For $n_f > n_i$:

\[
v = \frac{Z^2R_H}{h} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)
\]
5.111 Principles of Chemical Science
Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.