Session Overview
Modules | Structure of the Atom |
Concepts | electron orbital filling: Aufbau principle, Pauli exclusion principle, and Hund’s rule, photoelectron spectroscopy, average valence electron energy, quantum mechanics: wave/particle duality, Heisenberg uncertainty principle, Schrödinger equation |
Keywords | Louis de Broglie, Werner Heisenberg, Heisenberg uncertainty principle, Aufbau principle, Wolfgang Pauli, Pauli exclusion principle, Friedrich Hund, Hund’s rule, Erwin Schrödinger, Schrödinger equation, quantum number, principal quantum number, angular momentum, magnetic quantum number, electron filling order, electron occupancy, orbital degeneracy, electron configuration, photon, standing wave, destructive interference, constructive interference, metal crystals, x-ray analysis, electron diffraction, matter waves, simple harmonic oscillator, wave equation, eigenfunction, radial probability density, nodes, nodal plane, spectral line splitting, electron spin |
Chemical Substances | carbon (C), hydrogen (H) |
Applications | ray optics, wave mechanics |
Prerequisites
Before starting this session, you should be familiar with:
Looking Ahead
Prof. Sadoway discusses the Aufbau principle and photoelectron spectroscopy (Session 7).
Learning Objectives
After completing this session, you should be able to:
- Explain how quantum numbers define the state of the electron.
- Describe how electron orbitals are filled according to the Aufbau principle, Pauli exclusion principle and Hund’s rule.
- Calculate the wavelength of a particle using de Broglie’s theory.
- Articulate the implications of the Heisenberg uncertainty principle.
- Understand the relationship between the Schrödinger equation and quantum mechanics.
Reading
Archived Lecture Notes #1 (PDF), Section 3
Archived Lecture Notes #2 (PDF), Section 3
Book Chapters | Topics |
---|---|
[Saylor] 6.4, “The Relationship between Energy and Mass.” | The wave character of matter; standing waves; the Heisenberg uncertainty principle |
[Saylor] 6.6, “Building Up the Periodic Table.” | Electron spin: the fourth quantum number; the Pauli principle; electron configuration of the elements |
Lecture Video
Resources
Lecture Summary
In this lecture, Prof. Sadoway discusses the following topics:
- Quantum numbers – define the “state” of the electron
- n = principal quantum number
- l = angular momentum (“shape”)
- m = magnetic quantum number
- s = spin
- Aufbau principle, Pauli exclusion principle, Hund’s rule
- de Broglie’s theory – a particle can act as a wave
- Heisenberg uncertainty principle
- Schrödinger equation
Homework
Textbook Problems
[Saylor] Sections | Conceptual | Numerical |
---|---|---|
[Saylor] 6.4, “The Relationship between Energy and Mass.” | none | 2, 3, 4, 5, 6 |
For Further Study
Supplemental Readings
Schrödinger, Erwin. My View of the World. Cambridge, MA: University Press, 1964.
Schrödinger, Erwin. Collected Papers on Wave Mechanics: Together With His Four Lectures on Wave Mechanics. New York, NY: Chelsea Publications, 1982. ISBN: 9780821829769.
Peat, F. David. From Certainty to Uncertainty: The Story of Science and Ideas in the Twentieth Century. Washington, DC: Joseph Henry Press, 2002. ISBN: 9780309076418.
Rigden, John S. Hydrogen: The Essential Element. Cambridge, MA: Harvard University Press, 2002. ISBN: 9780674012523.
Frayn, M. Copenhagen: A Play in Two Acts. New York, NY: S. French, 2000.
Powers, Thomas. Heisenberg’s War: The Secret History of the German Bomb. New York, NY: Knopf, 1993. ISBN: 9780306810114.
People
Louis de Broglie - 1929 Nobel Prize in Physics
Werner Heisenberg - 1932 Nobel Prize in Physics
Erwin Schrödinger - 1933 Nobel Prize in Physics
Wolfgang Pauli - 1945 Nobel Prize in Physics
Clinton Davisson - 1937 Nobel Prize in Physics
Other OCW and OER Content
Content | Provider | Level | Notes |
---|---|---|---|
5.111 Principles of Chemical Science | MIT OpenCourseWare | Undergraduate (first-year) |
Lecture 3: Wave-Particle Duality of Light Lecture 4: Wave-Particle Duality of Matter |
Atomic Structure, The Schrödinger Equation | HyperPhysics | High school |