1. A catalyst lowers an $E_{a,f}$ from 358 kJ mol$^{-1}$ to 350. kJ mol$^{-1}$ for a particular reaction. Determine the change (if any) in the:
 (a) ΔE for the reaction and
 (b) $E_{a,r}$ for the reaction.

 (a) **A catalyst does not affect the ΔE for the reaction. The ΔE is a State Function (i.e. independent of path).**
 (b) **The $E_{a,r}$ is also lower by 8 kJ.**

2. (a) Draw a reaction coordinate diagram with “potential energy (P.E.)” on the Y-axis and “Reaction Coordinate ->” on the X-axis for an endothermic reaction.
 (b) Show as a solid line, the activation energy barrier for the uncatalyzed reaction, and show as a dashed line, the activation energy barrier for the catalyzed reaction.
 (c) Label the diagram with “products”, “reactants,” and “ΔE.”

Additional Book Problems:

Atkins and Jones, Chemical Principles, fifth edition:

Chapter 14.16, problem 14.95