Forecasting and Inventory Management of Short Life-Cycle Products

A. Kurawarwala and H. Matuso
Presented by Guillaume Roels
Operations Research Center

Short Life-Cycle Products

(Screenshot of the home page from Dell Inc.: http://www.dell.com – last accessed June 29, 2004.)
Short Life-Cycles

- **Causes**
 - Fast Changing Consumer Preferences
 - Rapid Rate of Innovation

- **Procurement Issues**
 - Forecasting with no historical data
 - Long lead-times
 - Perishable Inventory

- **Introduction Time**
Outline

- Forecasting new product introduction
- Procurement issues
 - Model Formulation
 - Optimal Control Solution
 - Discussion
- Case Study
New Product Introduction

- No past sales data
 - Time-series useless
- But multiple-product environment
 - Some level of predictability
 - Independence (serve different needs)
Diffusion Theory

- “[Innovation] is communicated through certain channels over time among members of a social system”

- Marketing application:
 - Mass Media
 - Word of Mouth
The Bass Model

Noncumulative adoption vs. time

- Internal Influence
- External Influence
The Bass Model: Assumptions

- Market potential remains consistent over time
- Independence of other innovations
- Product and Market characteristics do not influence diffusion patterns

- Competition?
The Bass Model: Sales Evolution

\[
\frac{dN_t}{dt} = p + q \frac{N_t}{m} (m - N_t) \alpha_t
\]

Current Sales

Mass Media

Word-of-Mouth

Remaining market potential

Seasonality Coeff.

Many applications at Eastman Kodak, IBM, Sears, AT&T…
Case-Study: PC Manufacturer

- Monopolist (strongly differentiated)
- Life-cycle: 1-2 years
- Peak sales timing is predictable T^*
 - Christmas peak
- Typical seasonal variation in demand α_t
 - End-of-quarter effect
- Information on total life-cycle sales m
Numerical Example (M2)

Sales Evolution of High-End Computers (M2)

Parameters Estimation

- Estimation of p, q, m, α_t
- Nonlinear Least Squares
- R-squared above .9
Numerical Example (M2)

Outline

- Forecasting new product introduction
- **Procurement issues**
 - Model Formulation
 - Optimal Control Solution
 - Discussion
- Case Study
Procurement Issues

- Need to place orders in advance
 - Long lead-times
 - Cost advantage, timely delivery
- Inventory/Backorder costs
- Schedule the procurement to meet the (random) demand, evolving according to Bass’ Model
Model Description

- State: Cumulative Procurement V_t
- Control: Instantaneous Procurement u_t
- Transition function
 $$V_t = u_t \quad V_0 = 0$$
- Finite-Horizon T Optimization
- Discounted cost at rate r
Cost Parameters

- Instantaneous trade-off between
 - Inventory holding costs $h(V_t - N_t)^+$
 - Backorder costs $p(N_t - V_t)^+$
 \[P_t(V_t - N_t) \]

- Terminal trade-off between
 - Salvage inventory loss $l(V_T - N_T)^+$
 - Shortage costs $s(N_T - V_T)^+$
 \[Q_T(N_T - V_T) \]
Optimal Control Model

\[
\min_u J = \int_0^T e^{-rt} \int_{N_t} P_t(V_t - N_t)\psi(N_t)dN_tdt + e^{-rT} \int_{N_T} Q_T(V_T - N_T)\psi(N_T)dN_T
\]

such that: \(V_t = u_t \) and \(u_t \geq 0 \)

- Timely delivery of customer orders?
- What if we do not want to serve all the demand?
- Why no chance constraints instead?
Hamiltonian function

Define

$$\lambda_t = \nabla_v J^*(t, V_t^*)$$

Hamiltonian

$$H(V, u, \lambda) = P_t(V, u) + \lambda u$$
Pontryagin Minimum Principle

1. Adjoint Equation
 \[\lambda_t = -\frac{\partial H(V^*_t, u^*_t, \lambda_t)}{\partial V_t} \]

2. Boundary Condition
 \[\lambda_T = \frac{d}{dV_T} \left[\int_{N_T} Q_T(N_T - V_T)\psi_T(N_T) dN_T \right] \]

3. Optimality of Control
 \[u^*_t = \arg \min_{u \geq 0} H(V^*_t, u, \lambda_t) \]
Case I: \(\frac{b}{b+h} \leq \frac{s}{s+l} \)

- Maintain the same service level
 \[\Psi_t(V_t) = \frac{b}{b+h} \]
- Impulse at the end of horizon
 \[\Psi_T(V_T) = \frac{s}{s+l} \]
Procurement Policy

Cumulative units

Cumulative Inventory

Expected Cumulative Demand

Time
Case II: \[
\frac{b}{b+h} > \frac{s}{s+l}
\]

- For \(0 \leq t \leq \hat{t}\), keep the same service level

\[
\Psi_t(V_t) = \frac{b}{b+h}
\]

- For \(\hat{t} \leq t \leq T\),
 - Do not purchase anymore
 - Decrease gradually the service level down to \(\frac{s}{s+l}\)
Desired/Effective Service Level

- In practice, backorder costs are hard to evaluate...
- Instead, evaluate the desired SL \(\frac{b}{b+h} \)

- Terminal service level: switch the customers to an upgraded model
 - Loss of goodwill
 - Higher cost

- Case II is typical in practice
 - Terminal SL < Lifetime SL
Procurement Policy

Cumulative units \hat{V}

Expected Cumulative Demand

Cumulative Inventory

Phase-Out Period

Time \hat{t}
Revised Multiple-Period Implementation

- Update the estimation of p, q, m
Time-varying costs

- Time-varying costs
 - Decreasing purchase costs
 - 30% in less than 6 months

- Underage Costs
 - Backorder penalty b
 - Save the cost decrease c_t
 - Save from the cost of capital $-rc_t$
 - Decreasing over time
 - Hence, increasing service level
Outline

- Forecasting new product introduction
- Procurement issues
 - Model Formulation
 - Optimal Control Solution
 - Discussion
- Case Study
PC Manufacturer: New Product Introduction

1. When should it be launched? May or August?
2. How much and when should we order?

Sensitivity Analysis on the Lifetime Service Level
Parameters Estimation

- Randomness summarized in m, p, q
- Estimation of the size of the market m
- Estimation of the peak time T^*
 - Relation between p and q
- Past Product Introductions (M1-M4)
 - Estimation of the distribution of q
 - Sensitivity Analysis on variance
Demand Estimation (May)

Service Levels

- Lifetime service level
 - 95% vs. 99%?
- Terminal service level: 33%

- Hence, Case II, i.e.
 - Purchase period
 - Phase-out period
Procurement Decisions (May)

- Longer Phase-Out with low SL
- Reduce Procurement after peak season

Safety Stock Evolution

- Deplete SS in the last quarter
- Avg SS=5 or 8 weeks of demand

Additional Insights

- Launching the product early requires less inventories.

- With decreasing costs,
 - Reduced service levels (but increasing over time); hence, less inventory.
 - Delayed procurement cutoff time.
Conclusions

- Application-driven research
 - Adapt Bass’ Model
 - Optimal Control

- Additional issues:
 - Effectiveness of Bass’ Model?
 - Backorder costs vs. Service Level?
 - Terminal shortage penalty vs. Stopping time?
Thank you

Questions?