Lecture F05 Mud: Intro to 3-D Wings

1. **What exactly is downwash?** (1 student)
 A vertical velocity component which is due to the presence of the tip vortices. If the wing has infinite span (is 2-D), there are no vortices and no downwash.

2. **Why do we look at only the vertical \(z \)-velocity of the vortex, and not the horizontal \(y \)-velocity?** (1 student)
 Only the vertical component affects the velocity triangle and the angle of attack in the \(x-z \) airfoil plane.

3. **How do the vortices affect the flow in front of the wing?** (1 student)
 The vortices do have downwash ahead of the wing, but it rapidly decays to zero as we move upstream.

4. **Does the downwash have any affect below the wing?** (1 student)
 The downwash is maximum directly behind the wing, and gradually dies off to zero as we go up or down.

5. **How do you design a plane to minimize the downwash?** (1 student)
 The surest way is to increase the span, but this has other drawbacks. In the UE Dragonfly competition you will be looking at these tradeoffs.

6. **What is the significance of \(\alpha_{\text{eff}} \)?** (1 student)
 It’s the effective angle of attack seen by the wing. The diagram in the notes shows how it relates to the geometric \(\alpha \), and the induced angle \(\alpha_i \) caused by the downwash.

7. **How does \(w \sim 1/V_\infty \)?** (2 students)
 The simple momentum analysis indicated that \(L = \rho V_\infty w b^2 \). In level flight, \(L = \text{weight} \) which is fixed. So as the airplane slows down and \(V_\infty \) decreases, \(w \) must increase in proportion to maintain the constant lift.

8. **Do upturned wings (dihedral) affect the tip vortices?** (2 students)
 For small dihedral angles, it’s not significant. Sharply-angled winglets do have a significant effect.

9. **What is \(C_{D_p} \)? ** Is viscosity important?** (1 student)
 This is profile drag, or viscous drag. On a wing, it is the chord-weighted average 2-D viscous \(c_d \), which is what Xfoil or airfoil tunnel data gives. In general, \(c_d \) and hence \(C_{D_p} \) significantly depends on \(c_\ell \) and Reynolds number.

10. **What’s \(\bar{c} \)? ** Why isn’t it the same as \(c_{\text{avg}} \)?** (1 student)
 A simple average and an r.m.s. average do not give the same results. You can try a simple \(c(y) \) function, and compute both \(c_{\text{avg}} \) and \(\bar{c} \) to convince yourself.

11. **If we use different \(c_{\text{ref}} \), won’t we get different \(C_M \)?** (1 student)
 Yep. But this doesn’t matter, as long as you use the same \(c_{\text{ref}} \) to get back the dimensional \(M \) values from \(C_M \).

12. **Why is \(L' \) perpendicular to \(V_\infty \), and \(D'_\ell \) perpendicular to \(w \)?** (1 student)
 By definition, really. Maybe go through the notes to see how the formulas are obtained.

13. **No mud** (11 students)