Lecture 12 - Digital Circuits (I)

THE INVERTER

October 20, 2005

Contents:

1. Introduction to digital electronics: the inverter
2. NMOS inverter with resistor pull up

Reading assignment:

Howe and Sodini, Ch. 5, §§5.1-5.3.2
Key questions

• What are the key figures of merit of logic circuits?
• How can one make a simple inverter using a single MOSFET?
1. Introduction to digital electronics: the inverter

In digital electronics, digitally-encoded information is represented by means of two distinct voltage ranges:

- **logic 0**: $V_{MIN} \leq V \leq V_{OL}$
- **logic 1**: $V_{OH} \leq V \leq V_{MAX}$
- **undefined logic value**: $V_{OL} \leq V \leq V_{OH}$.

Logic operations are performed using *logic gates*.

Simplest logic operation of all: *inversion* \Rightarrow inverter
Ideal inverter:

\[
\begin{array}{c|c}
\text{IN} & \text{OUT} \\
0 & 1 \\
1 & 0 \\
\end{array}
\]

Circuit representation and ideal transfer function:

Define **switching point** or **logic threshold**:

\[
V_M \equiv \text{input voltage for which } V_{OUT} = V_{IN}
\]

- for \(0 \leq V_{IN} \leq V_M\) \(\Rightarrow\) \(V_{OUT} = V^+\)

- for \(V_M \leq V_{IN} \leq V^+\) \(\Rightarrow\) \(V_{OUT} = 0\)
Key property of ideal inverter: *signal regeneration*

Ideal inverter returns well defined logical outputs (0 or V^+) even in the presence of considerable noise in V_{IN} (from voltage spikes, crosstalk, etc.)

- **logic level restoration**
- **noise suppression**
- **pulse edge sharpening**
"Real" inverter:

In a real inverter, valid logic levels defined as follows:

- **logic 0**:

 \[V_{MIN} \equiv \text{output voltage when } V_{IN} = V^+ \]

 \[V_{OL} \equiv \text{smallest output voltage where slope=}-1 \]

- **logic 1**:

 \[V_{OH} \equiv \text{largest output voltage where slope=}-1 \]

 \[V_{MAX} \equiv \text{output voltage when } V_{IN} = 0 \]
Two other important voltages:

\[V_{IL} \equiv \text{smallest input voltage where slope=-1} \]

\[V_{IH} \equiv \text{highest input voltage where slope=-1} \]

To have signal regeneration:

range of input values that produce acceptable logic output > range of valid logic values

Key to signal regeneration in inverter: high voltage gain
Quantify signal regeneration through *noise margins*.

Consider chain of two inverters:

![Diagram of two inverters](image)

Define *noise margins*:

$$NM_H = V_{OH} - V_{IH} \quad \text{noise margin high}$$

$$NM_L = V_{IL} - V_{OL} \quad \text{noise margin low}$$

When signal is within noise margins:

- logic 1 output from first inverter interpreted as logic 1 input by second inverter
- logic 0 output from first inverter interpreted as logic 0 input by second inverter
Simplifications for hand calculations

Hard to compute $A_v = -1$ points in transfer function.

Approximate calculation:

- Assume $V_{OL} \simeq V_{MIN}$ and $V_{OH} \simeq V_{MAX}$
- Trace tangent of transfer function at V_M (slope=small signal voltage gain at V_M)
- $V_{IL} \simeq$ intersection of tangent with $V_{OUT} = V_{MAX}$
- $V_{IH} \simeq$ intersection of tangent with $V_{OUT} = V_{MIN}$
- to enhance noise margin: $|A_v(V_M)| \uparrow$
\[
|A_v(V_M)| \simeq \frac{V_{MAX} - V_M}{V_M - V_{IL}} \Rightarrow V_{IL} \simeq V_M - \frac{V_{MAX} - V_M}{|A_v(V_M)|}
\]

\[
|A_v(V_M)| \simeq \frac{V_M - V_{MIN}}{V_{IH} - V_M} \Rightarrow V_{IH} \simeq V_M(1 + \frac{1}{|A_v(V_M)|}) - \frac{V_{MIN}}{|A_v(V_M)|}
\]

Then:

\[
NM_L = V_{IL} - V_{OL} \simeq (V_{MAX} - V_{MIN}) - (V_{MAX} - V_M)(1 + \frac{1}{|A_v(V_M)|})
\]

\[
NM_H = V_{OH} - V_{IH} \simeq (V_{MAX} - V_{MIN}) - (V_M - V_{MIN})(1 + \frac{1}{|A_v(V_M)|})
\]

If \(|A_v(V_M)| \rightarrow \infty\):

\[
NM_L \rightarrow V_M - V_{MIN} \quad NM_H \rightarrow V_{MAX} - V_M
\]
Transient characteristics

Look at inverter switching in the time domain:

\[t_R \equiv \text{rise time} \text{ between } 10\% \text{ and } 90\% \text{ of total swing} \]

\[t_F \equiv \text{fall time} \text{ between } 90\% \text{ and } 10\% \text{ of total swing} \]

\[t_{PHL} \equiv \text{propagation delay from high-to-low between} \]
\[50\% \text{ points} \]

\[t_{PLH} \equiv \text{propagation delay from low-to-high between} \]
\[50\% \text{ points} \]

Propagation delay: \[t_P = \frac{1}{2}(t_{PHL} + t_{PLH}) \]
Propagation delay: simplification for hand calculations

- Input wavefunction = ideal square wave
- Propagation delay times = delay times to 50% point

Hand calculations only approximate
- SPICE essential for accurate delay analysis
2. NMOS inverter with resistor pull up

Features:

- $V_{BS} = 0$ (typically not shown)
- C_L summarizes capacitive loading of following stages (other logic gates, interconnect lines)

Basic operation:

- if $V_{IN} < V_T$, MOSFET OFF $\Rightarrow V_{OUT} = V_{DD}$
- if $V_{IN} > V_T$, MOSFET ON $\Rightarrow V_{OUT}$ small (value set by resistor/nMOS divider)
Transfer function obtained by solving:

\[I_R = I_D \]

Can solve graphically: I-V characteristics of pull-up resistor on \(I_D \) vs. \(V_{OUT} \) transistor characteristics:
Overlap I-V characteristics of resistor pull-up on I-V characteristics of transistor:

Transfer function:
Logic levels:

For V_{MAX}, transistor is cut-off, $I_D = 0$:

$$V_{MAX} = V_{DD}$$

For V_{MIN}, transistor is in linear regime; solve:

$$I_D = \frac{W}{L} \mu_n C_{ox} \left(V_{DD} - \frac{V_{MIN}}{2} - V_T \right) V_{MIN} = I_R = \frac{V_{DD} - V_{MIN}}{R}$$

For V_M, transistor is in saturation; solve:

$$I_D = \frac{W}{2L} \mu_n C_{ox} (V_M - V_T)^2 = I_R = \frac{V_{DD} - V_M}{R}$$

Will continue next lecture with analysis of noise margin and dynamics...
Key conclusions

• Logic circuits must exhibit *noise margins* in which they are immune to noise in input signal.

• Logic circuits must be *regenerative*: able to restore clean logic values even if input is noisy.

• *Propagation delay*: time for logic gate to perform its function.

• Concept of *load line*: graphical technique to visualize transfer characteristics of inverter.

• First-order solution (by hand) of inverter figures of merit easy if regimes of operation of transistor are correctly identified.

• For more accurate solutions, use SPICE (or other circuit CAD tool).