Lecture 13 - Digital Circuits (II)

MOS Inverter Circuits

October 25, 2005

Contents:

1. NMOS inverter with resistor pull-up (cont.)
2. NMOS inverter with current-source pull-up
3. Complementary MOS (CMOS) Inverter

Reading assignment:

Howe and Sodini, Ch. 5, §5.3
Key questions

• What are the key design trade-offs of the NMOS inverter with resistor pull-up?

• How can one improve upon these trade-offs?

• What is special about a CMOS inverter?
1. NMOS inverter with resistor pull-up (cont.)

\[V_{IN} \]
\[V_{OUT} \]
\[V^+ = V_{DD} \]
\[R \]
\[V_{OL} = V_{MIN} \]
\[V_{OH} = V_{MAX} = V_{DD} \]
\[V_{OUT} = V_{DS} \]
\[V_{IN} = V_{GS} \]
\[V_{IL} \]
\[V_{IH} \]
\[V_{M} \]
\[\text{slope} = A_v(V_{M}) \]

\[V_{OL} = V_{MIN} \]
\[V_{OH} = V_{MAX} = V_{DD} \]

\[NM_L = V_{IL} - V_{OL} = V_{M} - \frac{V_{MAX} - V_{M}}{|A_v(V_{M})|} - V_{MIN} \]

\[NM_H = V_{OH} - V_{IH} = V_{MAX} - V_{M}(1 + \frac{1}{|A_v(V_{M})|}) + \frac{V_{MIN}}{|A_v(V_{M})|} \]

Need to compute \(|A_v(V_{M})|\).
Small-signal equivalent circuit model at V_M (transistor in saturation):

\[
v_{out} = -g_m v_{in} (r_o/|R|)
\]

Then:

\[
A_v = \frac{v_{out}}{v_{in}} = -g_m (r_o/|R|) \simeq -g_m R
\]

Then:

\[
|A_v(V_M)| = g_m(V_M)R
\]

From here, get NM_L and NM_H using above formulae.
Dynamics

- C_L pull-down limited by current through transistor [will study in detail with CMOS]
- C_L pull-up limited by resistor ($t_{PLH} \sim RC_L$)
- pull-up slowest
Inverter design issues:

noise margins $\uparrow \Rightarrow |A_v| \uparrow \Rightarrow$

- $R \uparrow \Rightarrow RC_L \uparrow \Rightarrow$ slow switching
- $g_m \uparrow \Rightarrow W \uparrow \Rightarrow$ big transistor
 (slow switching at input)

Trade-off between speed and noise margin.

During pull-up, need:

- high current for fast switching,
- but also high resistance for high noise margin.

\Rightarrow use *current source* as pull-up.
2. NMOS inverter with current-source pull-up

I-V characteristics of current source:

![I-V characteristic diagram]

Equivalent circuit models:

- Large-signal model:
 - high current throughout voltage range: $i_{SUP} \simeq I_{SUP}$
 - high small-signal resistance, r_{oc}.

- Small-signal model:
NMOS inverter with current-source pull-up:

Transfer characteristics:

High $r_{oc} \Rightarrow$ high noise margin
Dynamics:

Faster pull-up because capacitor charged at constant current.
PMOS as current-source pull-up

I-V characteristics of PMOS:

Note: enhancement-mode PMOS has $V_{T_P} < 0$.

In saturation:

$$-I_{Dp} \propto (V_{SG} + V_{T_P})^2$$
Circuit and load-line diagram of inverter with PMOS current source pull-up:

Transfer function:
Noise margin:

- compute $V_M = V_{IN} = V_{OUT}$
- compute $|A_v(V_M)|$

At V_M both transistors saturated:

$$I_{Dn} = \frac{W_n}{2L_n} \mu_n C_{ox} (V_M - V_{Tn})^2$$

$$-I_{Dp} = \frac{W_p}{2L_p} \mu_p C_{ox} (V_{DD} - V_B + V_{Tp})^2$$

And:

$$I_{Dn} = -I_{Dp}$$

Then:

$$V_M = V_{Tn} + \sqrt{\frac{W_p}{\mu_p L_p}} (V_{DD} - V_B + V_{Tp}) \frac{\sqrt{W_n}}{\mu_n L_n}$$
Small-signal equivalent circuit model at V_M:

![Circuit Diagram]

\[
A_v = -g_{mn} \left(r_{on} / / r_{op} \right)
\]
NMOS inverter with current-source pull-up allows fast switching with high noise margins.

But... when $V_{IN} = V_{DD}$, there is a direct current path between supply and ground

⇒ power consumption even if inverter is idling.

Would like to have current source that is *itself* switchable, *i.e.*, it shuts off when input is high ⇒ CMOS!
Screen shots of NMOS inverter transfer characteristics:

- NMOS inverter with resistor pull-up

- NMOS inverter with current source pull-up
3. Complementary MOS (CMOS) Inverter

Circuit schematic:

Basic operation:

- $V_{IN} = 0 \Rightarrow V_{OUT} = V_{DD}$

 $V_{GSn} = 0 < V_{Tn} \Rightarrow$ NMOS OFF

 $V_{SGp} = V_{DD} > -V_{Tp} \Rightarrow$ PMOS ON

- $V_{IN} = V_{DD} \Rightarrow V_{OUT} = 0$

 $V_{GSn} = V_{DD} > V_{Tn} \Rightarrow$ NMOS ON

 $V_{SGp} = 0 < -V_{Tp} \Rightarrow$ PMOS OFF

No power consumption while idling in any logic state.
Output characteristics of both transistors:

\[V_{SDn} = V_{DSn} = V_{DD} - V_{SDp} \Rightarrow V_{SDp} = V_{DD} - V_{OUT} \]

\[I_{Dn} = -I_{Dp} \]

Note:

\[V_{IN} = V_{GSn} = V_{DD} - V_{SGp} \Rightarrow V_{SGp} = V_{DD} - V_{IN} \]

Combine into single diagram of \(I_D \) vs. \(V_{OUT} \) with \(V_{IN} \) as parameter.
no current while idling in any logic state.

Transfer function:

rail-to-rail logic: logic levels are 0 and V_{DD}

high $|A_v|$ around logic threshold \Rightarrow good noise margins
Transfer characteristics of CMOS inverter in WebLab:
Key conclusions

- In NMOS inverter with resistor pull-up: trade-off between noise margin and speed.
- Trade-off resolved using current-source pull-up: use PMOS as current source.
- In NMOS inverter with current-source pull-up: if $V_{IN} = HI$, power consumption even if inverter is idling.
- Complementary MOS: NMOS and PMOS switch alternatively ⇒
 - no power consumption while idling
 - ”rail-to-rail” logic: logic levels are 0 and V_{DD}
 - high $|A_v|$ around logic threshold ⇒ good noise margins