Lecture 14 - Digital Circuits (III)

CMOS

October 27, 2005

Contents:

1. Complementary MOS (CMOS) inverter: introduction
2. CMOS inverter: noise margins
3. CMOS inverter: propagation delay
4. CMOS inverter: dynamic power

Reading assignment:

Howe and Sodini, Ch. 5, §5.4

Announcements:

• Cadence tutorial by Kerwin Johnson in place of regular recitations on Friday 10/28
Key questions

• How does CMOS work?

• What is special about CMOS as a logic technology?

• What are the key design parameters of a CMOS inverter?

• How can one estimate the propagation delay of a CMOS inverter?

• Does CMOS burn any power?
1. Complementary MOS (CMOS) Inverter

Circuit schematic:

Basic operation:

• $V_{IN} = 0 \Rightarrow V_{OUT} = V_{DD}$

 $V_{GSn} = 0 < V_{Tn} \Rightarrow \text{NMOS OFF}$

 $V_{SGp} = V_{DD} > -V_{Tp} \Rightarrow \text{PMOS ON}$

• $V_{IN} = V_{DD} \Rightarrow V_{OUT} = 0$

 $V_{GSn} = V_{DD} > V_{Tn} \Rightarrow \text{NMOS ON}$

 $V_{SGp} = 0 < -V_{Tp} \Rightarrow \text{PMOS OFF}$
Output characteristics of both transistors:

Note:

\[V_{IN} = V_{GSn} = V_{DD} - V_{SGp} \Rightarrow V_{SGp} = V_{DD} - V_{IN} \]

\[V_{OUT} = V_{DSn} = V_{DD} - V_{SDp} \Rightarrow V_{SDp} = V_{DD} - V_{OUT} \]

\[I_{Dn} = -I_{Dp} \]

Combine into single diagram of \(I_D \) vs. \(V_{OUT} \) with \(V_{IN} \) as parameter.
no current while idling in any logic state.

Transfer function:

rail-to-rail” logic: logic levels are 0 and V_{DD}

high $|A_v|$ around logic threshold ⇒ good noise margins
Transfer characteristics of CMOS inverter in WebLab:
2. CMOS inverter: noise margins

- Calculate V_M
- Calculate $A_v(V_M)$
- Calculate $N M_L$ and $N M_H$

☐ **Calculate** V_M ($V_M = V_{IN} = V_{OUT}$)

At V_M both transistors saturated:

$$I_{Dn} = \frac{1}{2} \frac{W_n}{L_n} \mu_n C_{ox} (V_M - V_{Tn})^2$$

$$-I_{Dp} = \frac{1}{2} \frac{W_p}{L_p} \mu_p C_{ox} (V_{DD} - V_M + V_{Tp})^2$$

$V_{SOP} = V_{DD} - V_{IN}$
Define:

\[k_n = \frac{W_n}{L_n} \mu_n C_{ox}, \quad k_p = \frac{W_p}{L_p} \mu_p C_{ox} \]

Since:

\[I_{Dn} = -I_{Dp} \]

Then:

\[\frac{1}{2} k_n (V_M - V_{Tn})^2 = \frac{1}{2} k_p (V_{DD} - V_M + V_{Tp})^2 \]

Solve for \(V_M \):

\[V_M = \frac{V_{Tn} + \sqrt{\frac{k_p}{k_n} (V_{DD} + V_{Tp})}}{1 + \sqrt{\frac{k_p}{k_n}}} \]

Usually, \(V_{Tn} \) and \(V_{Tp} \) fixed and \(V_{Tn} = -V_{Tp} \)

\[\Rightarrow V_M \text{ engineered through } \frac{k_p}{k_n} \text{ ratio} \]
• Symmetric case: $k_n = k_p$

$$V_M = \frac{V_{DD}}{2}$$

This implies:

$$\frac{k_p}{k_n} = 1 = \frac{W_p}{L_p} \frac{\mu_p C_{ox}}{\frac{W_n}{L_n} \mu_n C_{ox}} \approx \frac{W_p}{L_p} \frac{\mu_p}{2 \mu_p} \Rightarrow \frac{W_p}{L_p} \approx 2 \frac{W_n}{L_n}$$

Since usually $L_p \approx L_n \Rightarrow W_p \approx 2W_n$.

![Graph showing the relationship between V_{OUT} and V_{IN} with V_{DD} and V_{M} as key points. The graph includes a dotted line for $V_{IN} = V_{OUT}$ and a dashed line for $V_{DD}/2$. The notation $k_n = k_p$ is shown at a specific point on the graph.](image-url)
- Asymmetric case: $k_n \gg k_p$, or $\frac{W_n}{L_n} \gg \frac{W_p}{L_p}$

$$V_M \simeq V_{Tn}$$

NMOS turns on as soon as V_{IN} goes above V_{Tn}.

- Asymmetric case: $k_n \ll k_p$, or $\frac{W_n}{L_n} \ll \frac{W_p}{L_p}$

$$V_M \simeq V_{DD} + V_{Tp}$$

PMOS turns on as soon as V_{IN} goes below $V_{DD} + V_{Tp}$.

Can engineer V_M anywhere between V_{Tn} and $V_{DD} + V_{Tp}$.
Calculate $A_v(V_M)$

Small-signal model:

$$A_v = -(g_{mn} + g_{mp})(r_{on}//r_{op})$$

This can be rather large.
Noise margins

- Noise-margin-low:

\[V_{IL} = V_M - \frac{V_{DD} - V_M}{|A_v|} \]

Therefore:

\[NM_L = V_{IL} - V_{OL} = V_{IL} = V_M - \frac{V_{DD} - V_M}{|A_v|} \]

In the limit of \(|A_v| \to \infty\):

\[NM_L \to V_M \]
• Noise-margin-high:

\[
V_{IH} = V_M (1 + \frac{1}{|A_v|})
\]

and

\[
NM_H = V_{OH} - V_{IH} = V_{DD} - V_M (1 + \frac{1}{|A_v|})
\]

In the limit of \(|A_v| \to \infty\):

\[
NM_H \to V_{DD} - V_M
\]

When \(V_M = \frac{V_{DD}}{2}\) \(\Rightarrow\) \(NM_L = NM_H = \frac{V_{DD}}{2}\)
3. CMOS inverter: propagation delay

Inverter propagation delay: time delay between input and output signals; key figure of merit of logic speed.

Typical propagation delays: < 1 ns.

Complex logic system has 20-50 propagation delays per clock cycle.

Estimation of t_p: use square-wave at input

\[
t_p = \frac{1}{2}(t_{PHL} + t_{PLH})
\]
Propagation delay **high-to-low:**

\[t_{PHL} \approx \frac{1}{2} \text{charge of } C_L @ t = 0^- \]

\[\text{discharge current at } t = 0^+ \]

During early phases of discharge, NMOS is saturated and PMOS is cut-off.

Time to discharge half of \(C_L \):
Charge in C_L at $t = 0^-$:

$$Q_L(t = 0^-) = C_L V_{DD}$$

Discharge current (NMOS in saturation):

$$I_{Dn} = \frac{W_n}{2L_n} \mu_n C_{ox} (V_{DD} - V_{Tn})^2$$

Then:

$$t_{PHL} \approx \frac{C_L V_{DD}}{\frac{W_n}{L_n} \mu_n C_{ox} (V_{DD} - V_{Tn})^2}$$
Propagation delay low-to-high:

During early phases of charge, PMOS is saturated and NMOS is cut-off.

Time to charge half of C_L:

$$t_{PLH} \approx \frac{1}{2} \text{charge of } C_L \text{ at } t = \infty \over \text{charge current at } t = 0^+$$
Charge in C_L at $t = \infty$:

$$Q_L(t = \infty) = C_L V_{DD}$$

Charge current (PMOS in saturation):

$$-I_{Dp} = \frac{W_p}{2L_p} \mu_p C_{ox} (V_{DD} + V_{Tp})^2$$

Then:

$$t_{PLH} \approx \frac{C_L V_{DD}}{W_p \mu_p C_{ox} (V_{DD} + V_{Tp})^2}$$
Key dependencies of propagation delays:

- $V_{DD} \uparrow \Rightarrow t_p \downarrow$

 Reason: $V_{DD} \uparrow \Rightarrow Q(C_L) \uparrow$, but also $I_D \uparrow$

 Trade-off: $V_{DD} \uparrow$, more power usage.

- $L \downarrow \Rightarrow t_p \downarrow$

 Reason: $L \downarrow \Rightarrow I_D \uparrow$

 Trade-off: manufacturing costs!
Components of load capacitance C_L:

- **following logic gates**: must add capacitance presented by each gate of every transistor the output is connected to
- **interconnect wire** that connects output to input of following logic gates
- **own drain-to-body capacitances**

$$C_L = C_G + C_{wire} + C_{DBn} + C_{DBp}$$

[See details in Howe & Sodini §5.4.3]
4. CMOS inverter: dynamic power

• In any of the two logic states: one transistor always OFF ⇒ zero static power dissipation.

• Dynamic power?

Every complete transient, C_L is charged up to V_{DD} and then discharged to 0
 ⇒ energy dissipated
 ⇒ clock frequency ↑ ⇒ dissipated power ↑
Dynamic power dissipated while charging load

1. Energy provided by battery during transient:

\[
E_S = \int_0^\infty V_{DD}i_C(t)dt = V_{DD} \int_0^\infty C_L \frac{dv_{OUT}}{dt}dt =
\]

\[
= C_L V_{DD} \int_0^{V_{DD}} dv_{OUT} = C_L V_{DD}^2
\]

2. Energy stored in capacitor during transient:

\[
\Delta E_C = E_C(t = \infty) - E_C(t = 0) = \frac{1}{2} C_L V_{DD}^2
\]

3. Energy dissipated in PMOS during transient:

\[
E_P = E_S - \Delta E_C = \frac{1}{2} C_L V_{DD}^2
\]
Dynamic power dissipated while discharging load

1. Energy provided by battery during transient:

\[E_S = \int_0^\infty V_{DD} i_{DD}(t) dt = 0 \]

2. Energy removed from capacitor during transient:

\[\Delta E_C = E_C(t = 0) - E_C(t = \infty) = \frac{1}{2} C_L V_{DD}^2 \]

3. Energy dissipated in NMOS during transient:

\[E_N = \Delta E_C = \frac{1}{2} C_L V_{DD}^2 \]
Energy dissipated in complete cycle

\[E_D = E_P + E_N = \Sigma E_S = C_L V_{DD}^2 \]

Power dissipation

If complete switching cycle takes place \(f \) times per second:

\[P_D = f E_D = f C_L V_{DD}^2 \]

Fundamental trade-off between switching speed and power dissipation!

Key dependencies in dynamic power:

- \(f \uparrow \Rightarrow P_D \uparrow \), charge and discharge \(C_L \) more frequently
- \(C_L \uparrow \Rightarrow P_D \uparrow \), more charge being shuttled around
- \(V_{DD} \uparrow \Rightarrow P_D \uparrow \), more charge being shuttled around
Key conclusions

- Key features of CMOS inverter:
 - no current while idling in any logic state
 - ”rail-to-rail” logic: logic levels are 0 and V_{DD}
 - high $|A_v|$ around logic threshold \Rightarrow good noise margins

- CMOS inverter logic threshold and noise margins engineered through W_n/L_n and W_p/L_p.

- Key dependences of propagation delay:
 - $V_{DD} \uparrow \Rightarrow t_p \downarrow$
 - $L \downarrow \Rightarrow t_p \downarrow$

- Dynamic power dissipated in CMOS:
 \[
P_D = fE_D = fC_L V_{DD}^2
 \]

 Fundamental trade-off between switching speed and power dissipation.