Lecture 21 - Multistage Amplifiers (I)

MULTISTAGE AMPLIFIERS

November 22, 2005

Contents:

1. Introduction
2. CMOS multistage voltage amplifier
3. BiCMOS multistage voltage amplifier
4. BiCMOS current buffer
5. Coupling amplifier stages

Reading assignment:

Howe and Sodini, Ch. 9, §§9.1-9.3
Key questions

- How can one build a wide range of high-performance amplifiers using the single-transistor stages studied so far?

- What are the most important considerations when assembling multistage amplifiers:
 - regarding interstage loading?
 - regarding interstage biasing?
1. Introduction

Amplifier requirements are often demanding:

- must adapt to specific kinds of signal source and load,
- must deliver sufficient gain

Single-transistor amplifier stages are very limited in what they can accomplish ⇒ *multistage amplifier*.

Issues:

- What amplifying stages should be used and in what order?
- What devices should be used, BJT or MOSFET?
- How is biasing to be done?
Summary of single stage characteristics:

<table>
<thead>
<tr>
<th>stage</th>
<th>A_{vo}, G_{mo}, A_{io}</th>
<th>R_{in}</th>
<th>R_{out}</th>
<th>key function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>$G_{mo} = g_m$</td>
<td>∞</td>
<td>$r_o//r_{oc}$</td>
<td>transcond. amp.</td>
</tr>
<tr>
<td>CD</td>
<td>$A_{vo} \simeq \frac{g_m}{g_m+g_{mb}}$</td>
<td>∞</td>
<td>$\frac{1}{g_m+g_{mb}}$</td>
<td>voltage buffer</td>
</tr>
<tr>
<td>CG</td>
<td>$A_{io} \simeq -1$</td>
<td>$\frac{1}{g_m+g_{mb}}$</td>
<td>$r_{oc}//[r_o(1+g_mR_S)]$</td>
<td>current buffer</td>
</tr>
<tr>
<td>CE</td>
<td>$G_{mo} \simeq g_m$</td>
<td>r_π</td>
<td>$r_o//r_{oc}$</td>
<td>transcond. amp.</td>
</tr>
<tr>
<td>CC</td>
<td>$A_{io} \simeq 1$</td>
<td>$r_\pi + \beta(r_o//r_{oc}//R_L)$</td>
<td>$\frac{1}{g_m + \frac{R_S}{\beta}}$</td>
<td>voltage buffer</td>
</tr>
<tr>
<td>CB</td>
<td>$A_{io} \simeq -1$</td>
<td>$\frac{1}{g_m}$</td>
<td>$r_{oc}//{r_o[1+g_m(r_\pi//R_S)]}$</td>
<td>current buffer</td>
</tr>
</tbody>
</table>

Key differences between BJT’s and MOSFETs:

BJT

\[
I_B = \frac{I_C}{\beta} \gg I_G = 0
\]

\[
g_m = \frac{qI_C}{kT} > g_m = \sqrt{\frac{2W}{L}\mu C_{ox}I_D}
\]

\[
r_o = \frac{V_A}{I_C} > r_o = \frac{1}{\lambda I_D}
\]

MOSFET
2. CMOS multistage voltage amplifier

☐ Goals:

- high voltage gain
- high \(R_{in} \)
- low \(R_{out} \)

☐ Good starting point: CS stage

\[\text{\checkmark} \quad R_{in} = \infty \quad \text{excellent!} \]
- \(A_{vo} = -g_m(r_o/r_{oc}), \) probably insufficient
- \(R_{out} = r_o/r_{oc}, \) too high
- Add second CS stage to get more gain:

\[v_{in1} = -g_{m1} \left(\frac{r_{o1}}{r_{oc1}} \right) v_{in1} \]

\[v_{out1} = v_{in2} - g_{m1} \left(\frac{r_{o1}}{r_{oc1}} \right) v_{in1} \]

\[v_{out2} = v_{in2} - g_{m2} \left(\frac{r_{o2}}{r_{oc2}} \right) v_{in2} \]

- \(R_{in} = \infty \)
- \(A_{vo1} \)
- \(A_{vo2} \)
- \(A_{vo3} \)

- \(R_{out} = \frac{1}{g_{m3} + g_{mb3}} \), now small

- Add CD stage at output:

\[v_{in} = v_{in3} - g_{m3} \left(\frac{1}{g_{m3} + g_{mb3}} \right) v_{in3} \]

\[v_{out} = v_{in3} - g_{m3} \left(\frac{1}{g_{m3} + g_{mb3}} \right) v_{in3} \]

- \(R_{in} = \infty \)
- \(A_{vo1} \)
- \(A_{vo2} \)
- \(A_{vo3} \)
- \(A_{vo4} \)

- \(R_{out} = \frac{1}{g_{m3} + g_{mb3}} \), now small
3. BiCMOS multistage voltage amplifier

- $A_{vo}(CE) > A_{vo}(CS)$ because $r_o(BJT) > r_o(MOSFET)$ and $g_m(BJT) > g_m(MOSFET)$ but...

CS stage is best first stage, since $R_{in} = \infty$.

- Add CE stage following CS stage?

Trouble is interstage loading degrades gain:

$$R_{out1} = \frac{r_o1}{r_{oc1}} \gg R_{in2} = r_{\pi2}$$

Voltage divider between stages:

$$\frac{R_{in2}}{R_{out1} + R_{in2}} = \frac{r_{\pi2}}{r_o1/r_{oc1} + r_{\pi2}} \approx \frac{r_{\pi2}}{r_o1/r_{oc1}} \ll 1$$

Additional gain provided by CE stage more than lost in interstage loading.
Use two CS stages, but add CC stage at output:

\[v_s^{v} - v_{in}^{+} + r_{o2} r_{oc2}^{+} - r_{o3} r_{oc3}^{+} r_{o3} r_{oc3}^{+} r_{oc}^{+} r_{oc}^{+} r_{o2} r_{oc2}^{+} r_{out}^{+} \]

Interstage loading:

\[R_{out2} = r_{o2} / r_{oc2}, \quad R_{in3} = r_{\pi3} + \beta_3 (r_{o3} / r_{oc3} / R_L) \]

Then, interstage loss:

\[\frac{R_{in3}}{R_{out2} + R_{in3}} = \frac{r_{\pi3} + \beta_3 (r_{o3} / r_{oc3} / R_L)}{r_{o2} / r_{oc2} + r_{\pi3} + \beta_3 (r_{o3} / r_{oc3} / R_L)} \]

better than trying to use a CE stage, but still pretty bad.

Benefit is that \(R_{out} \) has improved:

\[R_{out} = R_{out3} = \frac{1}{g_{m3}} + \frac{R_{out2}}{\beta_3} = \frac{1}{g_{m3}} + \frac{r_{o2} / r_{oc2}}{\beta_3} \]

Since, in general, \(g_m(BJT) > g_m(MOSFET) \), \(R_{out} \) could be better than CD output stage if \(r_{o2} / r_{oc2} \) is not too large. Otherwise, CD stage output is better.
Better voltage buffer: cascade CC and CD output stages.

What is best order? Since $R_{in}(CD) = \infty$, best to place CD first:

Interstage loading:

$$\frac{R_{in3}}{R_{out2} + R_{in3}} = 1$$

and excellent output resistance:

$$R_{out} = R_{out4} = \frac{1}{g_{m4}} + \frac{R_{out3}}{\beta_4} = \frac{1}{g_{m4}} + \frac{1}{\beta_4(g_{m3} + g_{mb3})}$$
4. BiCMOS current buffer

□ Goals:

- Unity current gain
- very low R_{in}
- very high R_{out}

Start with common-base stage:

\[
A_{io} = -1
\]

\[
R_{in} = \frac{1}{g_m}
\]

\[
R_{out} = \frac{r_{oc}}{\{r_o[1 + g_m(r_{\pi}/R_S)]\}}
\]

Note that if R_S is not too low, $R_{out} \simeq \frac{r_{oc}}{(\beta r_o)}$.

Can we further increase R_{out} by adding a second CB stage?
CB-CB current buffer:

\[R_{out} = R_{out2} = r_{oc2}/\{r_{o2}[1 + g_{m2}(r_{\pi2}/R_{out1})]\} \]

Plugging in \(R_{out1} \simeq r_{oc1}/(\beta_1 r_{o1}) \),

\[R_{out} = r_{oc2}/\{r_{o2}[1 + g_{m2}(r_{\pi2}/r_{oc1}/\beta_1 r_{o1})]\} \]

But, since \(r_{\pi2} \ll r_{oc1}/(\beta_1 r_{o1}) \), then

\[R_{out} \simeq r_{oc2}/[r_{o2}(1 + g_{m2} r_{\pi2})] \simeq r_{oc2}/(\beta_2 r_{o2}) \]

Did not improve anything! The base current limits the number of CB stages that improve \(R_{out} \) to just one.

Since CG stage has no gate current, cascade it behind CB stage.
☐ CB-CG current buffer:

\[
R_{out} = R_{out2} = \frac{r_{oc2}}{[r_{o2}(1 + g_{m2}R_{out1})]}
\]

with \(R_{out1} \approx \frac{r_{oc1}}{(\beta_1 r_{o1})} \),

\[
R_{out} = \frac{r_{oc2}}{[r_{o2}g_{m2}(r_{oc1}/(\beta_1 r_{o1})]}
\]

✓ Now \(R_{out} \) has improved by about \(g_{m2}r_{o2} \), but only to the extent that \(r_{oc2} \) is high enough...
5. Coupling amplifier stages

Capacitive coupling

Capacitors of large enough value behave as AC short, so signal goes through but bias is independent for each stage.

Example, CD-CC voltage buffer:

![DIAGRAM]

- **Advantages:**
 - can select bias point for optimum operation
 - can select bias point close to middle of rails for maximum signal swing

- **Disadvantages:**
 - to approximate AC short, need large capacitors that consume significant area
Direct coupling: share bias points across stages.

Example, CD-CC voltage buffer:

- **Advantages:**
 - no capacitors: compact

- **Disadvantages:**
 - bias point shared: constrains design
 - bias shifts from stage to stage and can stray too far from center of range

Assumes $V_{BE} = 0.7 \text{ V}$

$V_{GS} = 1.5 \text{ V}$
Solution: use PMOS CD stage:

![Circuit Diagram]

Assumes $V_{BE} = 0.7 \text{ V}$
$V_{GS} = 1.5 \text{ V}$

Trade-off: $g_m(\text{PMOS}) < g_m(\text{NMOS}) \rightarrow \text{higher } R_{out}$

In BiCMOS voltage amplifier:

$$R_{out} = \frac{1}{g_{m4}} + \frac{1}{\beta_4(g_{m3} + g_{mB3})}$$

smaller using PMOS
Summary of DC shifts through amplifier stages:

<table>
<thead>
<tr>
<th>Amplifier Type</th>
<th>NMOS</th>
<th>PMOS</th>
<th>npn</th>
<th>pnp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Source/ Common Emitter (CS/CE)</td>
<td>![NMOS CS/CE]</td>
<td>![PMOS CS/CE]</td>
<td>![npn CS/CE]</td>
<td>![pnp CS/CE]</td>
</tr>
<tr>
<td>Common Gate/ Common Base (CG/CB)</td>
<td>![NMOS CG/CB]</td>
<td>![PMOS CG/CB]</td>
<td>![npn CG/CB]</td>
<td>![pnp CG/CB]</td>
</tr>
<tr>
<td>Common Drain/ Common Collector (CD/CC)</td>
<td>![NMOS CD/CC]</td>
<td>![PMOS CD/CC]</td>
<td>![npn CD/CC]</td>
<td>![pnp CD/CC]</td>
</tr>
</tbody>
</table>
Important difference in bias shift between stages in BJT and MOSFET amps:

- In BJT (for npn):

\[V_{BE} \simeq V_{BE, on} \]

rather independent of transistor size and current level.

- In MOSFET (for nMOSFET):

\[V_{GS} = V_T + \sqrt{\frac{2I_D L}{\mu_n C_{ox} W}} \]

Can be engineered through bias current and transistor geometry.

Assumes \(V_{BE} = 0.7 \text{ V} \)
\[V_{GS} = 1.5 \text{ V} \]
Key conclusions

• To achieve amplifier design goals, several stages often needed.

• In multistage amplifiers, different stages used to accomplish different goals:
 – voltage gain: common-source, common emitter
 – voltage buffer: common-drain, common collector
 – current buffer: common-gate, common base

• In multistage amplifiers must pay attention to inter-stage loading to avoid unnecessary losses.

• In *direct-coupled* amplifiers, bias is shared between adjoining stages:
 – must select compromise bias,
 – must pay attention to bias shift from stage to stage.