Lecture 8 - PN Junction and MOS Electrostatics (V)

Electrostatics of Metal-Oxide-Semiconductor Structure (cont.)

October 4, 2005

Contents:
1. Overview of MOS electrostatics under bias
2. Depletion regime
3. Flatband
4. Accumulation regime
5. Threshold
6. Inversion regime

Reading assignment:
Howe and Sodini, Ch. 3, §§3.8-3.9

Announcements:
Quiz 1: 10/13, 7:30-9:30 PM, (lectures #1-9); open book; must have calculator.
Key questions

• Is there more than one regime of operation of the MOS structure under bias?

• What does "carrier inversion" mean and what is the big deal about it?

• How does the carrier inversion charge depend on the gate voltage?
1. Overview of MOS electrostatics under bias

Application of bias:

- built-in potential across MOS structure increases from ϕ_B to $\phi_B + V_{GB}$
- oxide forbids current flow \Rightarrow
 - $J = 0$ everywhere in semiconductor
 - need drift=-diffusion in SCR
- must maintain boundary condition at Si/SiO$_2$ interface: $E_{ox}/E_s \approx 3$

How can this be accommodated simultaneously? \Rightarrow quasi-equilibrium situation with potential build up across MOS equal to $\phi_B + V_{GB}$
Important consequence of quasi-equilibrium:

\Rightarrow Boltzmann relations apply in semiconductor

[they were derived starting from $J_e = J_h = 0$]

\[n(x) = n_i e^{q\phi(x)/kT} \]

\[p(x) = n_i e^{-q\phi(x)/kT} \]

and

\[np = n_i^2 \text{ at every } x \]

[not the case in p-n junction or BJT under bias]
2. Depletion regime

For $V_{GB} \geq 0$ gate ”attracts” electrons, ”repels” holes
⇒ depletion region widens

For $V_{GB} < 0$ gate ”repels” electrons, ”attracts” holes
⇒ depletion region shrinks
In depletion regime, all results obtained for zero bias apply if $\phi_B \rightarrow \phi_B + V_{GB}$.

For example:

- depletion region thickness:

 $$x_d(V_{GB}) = \frac{\epsilon_s}{C_{ox}} \sqrt{1 + \frac{4(\phi_B + V_{GB})}{\gamma^2}} - 1$$

- potential drop across semiconductor SCR:

 $$V_B(V_{GB}) = \frac{qN_a x_d^2(V_{GB})}{2\epsilon_s}$$

- potential drop across oxide:

 $$V_{ox}(V_{GB}) = \frac{qN_a x_d(V_{GB}) t_{ox}}{\epsilon_{ox}}$$
3. Flatband

At a certain negative V_{GB}, depletion region is wiped out ⇒ Flatband

\[V_{FB} = -\phi_B \]
4. Accumulation regime

If $V_{GB} < V_{FB}$ accumulation of holes at Si/SiO$_2$ interface
5. Threshold

Back to $V_{GB} > 0$.

For sufficiently large $V_{GB} > 0$, electrostatics change when $n(0) = N_a \Rightarrow \text{threshold}$.

Beyond threshold, cannot neglect contributions of electrons towards electrostatics.

Let’s compute the voltage (threshold voltage) that leads to $n(0) = N_a$.

Key assumption: use electrostatics of depletion (neglect electron concentration at threshold).
Computation of threshold voltage.

Three-step process:

- First, compute potential drop in semiconductor at threshold. Start from:

\[n(0) = n_i e^{q\phi(0)/kT} \]

Solve for \(\phi(0) \) at \(V_{GB} = V_T \):

\[
\phi(0)|_{V_T} = \frac{kT}{q} \ln \left(\frac{n(0)}{n_i} \right)|_{V_T} = \frac{kT}{q} \ln \left(\frac{N_a}{n_i} \right) = -\phi_p
\]

Hence:

\[V_B(V_T) = -2\phi_p \]
• Second, compute potential drop in oxide at threshold.

Obtain \(x_d(V_T) \) using relationship between \(V_B \) and \(x_d \) in depletion:

\[
V_B(V_T) = \frac{qN_a x_d^2(V_T)}{2\epsilon_s} = -2\phi_p
\]

Solve for \(x_d(V_T) \):

\[
x_d(V_T) = x_{d\max} = \sqrt{\frac{2\epsilon_s (-2\phi_p)}{qN_a}}
\]

Then:

\[
V_{ox}(V_T) = E_{ox}(V_T)t_{ox} = \frac{qN_a x_d(V_T)}{\epsilon_{ox}}t_{ox} = \gamma \sqrt{-2\phi_p}
\]
• Finally, sum potential drops across structure.

\[
V_T + \phi_B = V_B(V_T) + V_{ox}(V_T) = -2\phi_p + \gamma\sqrt{-2\phi_p}
\]

Solve for \(V_T\):

\[
V_T = V_{FB} - 2\phi_p + \gamma\sqrt{-2\phi_p}
\]

Key dependencies:

• If \(N_a \uparrow \rightarrow V_T \uparrow\). The higher the doping level, the more voltage required to produce \(n(0) = N_a\).

• If \(C_{ox} \uparrow \quad (t_{ox} \downarrow) \rightarrow V_T \downarrow\). The thinner the oxide, the less voltage dropped across it.
6. Inversion

What happens for $V_{GB} > V_T$?

More electrons at Si/SiO$_2$ interface than acceptors \Rightarrow inversion.

Electron concentration at Si/SiO$_2$ interface modulated by $V_{GB} \Rightarrow V_{GB} \uparrow \rightarrow n(0) \uparrow \rightarrow |Q_n| \uparrow$

field-effect control of mobile charge!

[essence of MOSFET]

Want to compute Q_n vs. V_{GB} *charge-control relation*

Make *sheet charge approximation*: electron layer at semiconductor surface is much thinner than any other dimension in problem (t_{ox}, x_d).
Charge-control relation
Let us look at overall electrostatics:
Key realization:

\[|Q_n| \propto n(0) \propto e^{q\phi(0)/kT} \]

\[|Q_B| \propto \sqrt{\phi(0)} \]

Hence, as \(V_{GB} \uparrow \) and \(\phi(0) \uparrow \), \(|Q_n| \) will change a lot, but \(|Q_B| \) will change very little.

Several consequences:

- little change in \(\phi(0) \) beyond threshold
- \(V_B \) does not increase much beyond \(V_B(V_T) = -2\phi_p \)
 (a thin sheet of electrons does not contribute much to \(V_B \)):
 \[V_B(\text{inv.}) \simeq V_B(V_T) = -2\phi_p \]
- little change in \(Q_B \) beyond threshold
- \(x_d \) does not increase much beyond threshold:
 \[x_d(\text{inv.}) \simeq x_d(V_T) = \sqrt{\frac{2\epsilon_s(-2\phi_p)}{qN_a}} = x_{dmax} \]
All extra voltage beyond V_T used to increase inversion charge Q_n. Think of it as capacitor:

- top plate: metal gate
- bottom plate: inversion layer

$$Q = CV$$

$$\Rightarrow Q_n = -C_{ox}(V_{GB} - V_T) \quad \text{for} \quad V_{GB} > V_T$$

Existence of Q_n and control over Q_n by $V_{GB} \Rightarrow$ key to MOS electronics
Key conclusions

<table>
<thead>
<tr>
<th>V_{GB}</th>
<th>M</th>
<th>O</th>
<th>S (p-type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FB}</td>
<td>Accumulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{GB}=V_{FB}</td>
<td>Flatband</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{FB}<V_{GB}<0</td>
<td>Depletion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{GB}=0</td>
<td>Zero bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0<V_{GB}<V_T</td>
<td>Depletion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{GB}=V_T</td>
<td>Threshold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{GB}>V_T</td>
<td>Inversion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In inversion:

$$|Q_n| = C_{ox}(V_{GB} - V_T)$$

for $V_{GB} > V_T$