In-Class Problems Week 4, Wed.

Problem 1. Recently MIT students have been taking a hard look at the haphazard building layout, and have been asking some hard questions. As always they know they can use their superior mathematical skills to get some real answers to those hard questions.

They decide to express the MIT building layout as a relation. Let C be the set of all building numbers and let R be the relation on the set C such that $(a,b) \in R$ if building a and building b are physically adjacent and there is a door between a and b (more importantly, one doesn’t have to go outside to get from a to b). Note that if $(a,b) \in R$, then (b,a) is also in R, so R is a symmetric relation. For convenience, they also define a building to be related to itself, so $(a,a) \in R$.

(a) For this part only, let C be the set of MIT buildings $10,13,12,4,8,26$. Then R looks like this:

\[R^2 \]

\[R^{\leq 2} \]

\[R^3 \]

If all self-loops were removed (i.e., all edges of the form (a,a)), would $R^2 = R^{\leq 2}$?

(b) We would like to connect the buildings so that for any pair of buildings (a,b), either one can reach b from a or one can reach a from b. The MIT administration wants to keep the number of connections between buildings as small as possible. In other words, MIT wants the size, $|R|$, of R to be as small as possible. What is the smallest R that will satisfy the MIT students? Is the smallest R unique?

Copyright © 2005, Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld.
Problem 2. (a) What are the maximal and minimal elements, if any, of the set, \(\mathbb{N} \), of all natural numbers under divisibility? Is there a minimum or maximum element?

(b) What are the minimal and maximal elements, if any, of the set of integers \(\geq 2 \) under divisibility?

Problem 3. (a) Describe a sequence consisting of the integers from 1 to 10,000 in some order so that there is no increasing or decreasing subsequence of size 101.

(b) What is the size of the longest chain that is guaranteed to exist in any partially ordered set of \(n \) elements? What about the largest antichain?

(c) Describe a partially ordered set that has no minimal or maximal elements.

(d) Describe a partially ordered set that has a *unique minimal* element, but no minimum element.

Problem 4. A pair of 6.042 TAs, Zardosht and Ching, have decided to devote some of their spare time this term to establishing dominion over the entire galaxy. Recognizing this as an ambitious project, they worked out the following table of tasks on the back of Ching’s copy of the lecture notes.

1. **Devise a logo** and cool imperial theme music - 8 days.

2. **Build a fleet** of Hyperwarp Stardestroyers out of eating paraphernalia swiped from Lobdell - 18 days.

3. **Seize control** of the United Nations - 9 days, after task #1.

4. **Get shots** for Zardosht’s cat, Emilios - 11 days, after task #1.

5. **Open a Starbucks chain** for the army to get their caffeine - 10 days, after task #3

6. **Train an army** of elite interstellar warriors by dragging people to see *The Phantom Menace* dozens of times - 4 days, after tasks #3, #4, and #5.

7. **Launch the fleet** of Stardestroyers, crush all sentient alien species, and establish a Galactic Empire - 6 days, after tasks #2 and #6.

8. **Defeat Microsoft** - 8 days, after tasks #2 and #6.

(a) Express the information in the task list using some type of graph (label the vertices to reflect task lengths).

(b) Give some valid order in which the tasks might be completed.

Zardosht and Ching want to complete all these tasks in the shortest possible time. However, they have agreed on some constraining work rules.
In-Class Problems Week 4, Wed.

- Only one person can be assigned to a particular task; they can not work together on a single task.
- Once a person is assigned to a task, that person must work exclusively on the assignment until it is completed. So, for example, Zardosht cannot work on building a fleet for a few days, run get shots for Emilios, and then return to building the fleet.

(c) Zardosht and Ching want to know how long conquering the galaxy will take. Ching suggests dividing the total number of days of work by the number of workers, which is two. What lower bound on the time to conquer the galaxy does this give, and why might the actual time required be greater?

(d) Zardosht proposes a different method for determining the duration of their project. He suggests looking at the duration of the “critical path”, the most time-consuming sequence of tasks such that each depends on the one before. What lower bound does this give, and why might it also be too low?

(e) What is the minimum number of days that Zardosht and Ching need to conquer the galaxy? No proof is required.
Appendix

Definition. Let \(\preceq \) be a weak (reflexive) partial order on a set, \(A \).

- An element \(a \in A \) is a lower bound for a subset, \(S \subseteq A \) iff \(a \preceq s \) for every \(s \in S \). Similarly, an element \(a \in A \) is an upper bound for a subset, \(S \subseteq A \) iff \(s \preceq a \) for every \(s \in S \).

- An element \(a \in A \) is the minimum element iff \(a \) is a lower bound on \(A \). Similarly, an element \(a \in A \) is the maximum element iff \(a \) is an upper bound on \(A \).

- An element \(a \in A \) is the greatest lower bound (glb) of a subset, \(S \subseteq A \) iff \(a \) is a lower bound for \(S \), and if \(b \in A \) is also a lower bound for \(S \), then \(b \preceq a \). Similarly for least upper bound (lub).

- An element \(a \in A \) is minimal iff there is no element in \(A \) that is \(\preceq a \) except \(a \) itself. Similarly, an element \(a \in A \) is maximal iff there is no element in \(A \) that is \(\succeq a \) except \(a \) itself.

- Elements \(a, b \in A \) are comparable iff either \(a \preceq b \) or \(b \preceq a \). Two elements are incomparable iff they are not comparable.

- A subset, \(S \subseteq A \) is totally ordered iff every two distinct elements in \(S \) are comparable.

- A chain is a totally ordered subset of \(A \).

- An antichain is a subset of \(A \), such that no two elements in it are comparable.