Damped Harmonic Oscillators

In the last session we modeled a spring-mass-dashpot system with the constant coefficient linear DE

\[m\ddot{x} + b\dot{x} + kx = F_{\text{ext}}, \]

where \(m \) is the mass, \(b \) is the damping constant, \(k \) is the spring constant and \(x(t) \) is the displacement of the mass from its equilibrium position.

We then assumed the external force \(F_{\text{ext}} = 0 \) and used the characteristic equation technique to solve the homogeneous equation

\[m\ddot{x} + b\dot{x} + kx = 0. \quad (1) \]

Restrictions on the coefficients: The algebra does not require any restrictions on \(m, b \) and \(k \) (except \(m \neq 0 \) so that the equation is genuinely second order). But, since this is a physical model, we will now require \(m > 0, b \geq 0 \) and \(k > 0 \).

The Damped Harmonic Oscillator: The undamped \((b = 0)\) system has equation

\[m\ddot{x} + kx = 0. \]

At this point you should have memorized the solution and also be able to solve this equation using the characteristic roots. The solution is

\[x(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t) = A \cos(\omega t - \phi). \]

Here \(\omega = \sqrt{k/m} \) and the solution is given in both rectangular and amplitude-phase form. The solution is always a sinusoid, which we consider a simple oscillation, and we call this system a **simple harmonic oscillator**.
When we add damping we call the system in (1) a **damped harmonic oscillator**. This is a much fancier sounding name than the spring-mass-dashpot. It emphasizes an important fact about using differential equations for modeling physical systems. It doesn’t matter whether x measures position or current or some other quantity. Any system modeled by equation (1) will respond just like the spring-mass-dashpot; that is, all damped harmonic oscillators exhibit similar behavior. We will see an important example of this principle when we study the case of an RLC electrical circuit.