Signals and Systems

Instructor

Prof. Steven R. Hall

Learning Objectives

16.01-02 Signals and Systems (PDF)

16.03-04 Signals and Systems (PDF)

Textbooks

16.01-16.02

Edwards, C. H., and David E. Penney. Elementary Differential Equations with Boundary Value Problems. 4th ed. Englewood Cliffs, NJ: Prentice Hall, 1999. ISBN: 0130113018.

16.03-16.04

Oppenheim, Alan, Alan Willsky, and S. Hamid Nawab. Signals and Systems. 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1996. ISBN: 0138147574.

This book treats both continuous-time and discrete-time signals and systems, whereas this course deals almost exclusively with continuous-time signals. Students may generally ignore sections in the assigned reading on discrete-time systems. However, some of the explanations given in the continuous-time sections are given as analogies to or limits of the discrete-time cases, so students will have some familiarity with the discrete-time notation.

Table Organization

16.01-16.02

LEC # TOPICS CONCEPT QUESTIONS MUDDY POINTS READINGS ASSIGNMENTS / SOLUTIONS
S1 Overview of Signals and Systems, Circuit Elements (PDF) (PDF) S1 Notes ( PDF)

Linear Algebra Supplement (PDF)

Problem S1 (PDF)

Solution S1 (PDF)

S2 Circuit Elements (cont.), Kirchhoff’s Laws (PDF) (PDF) S2 Notes (PDF) Problem S2 (PDF)

Solution S2 (PDF)

S3 Kirchhoff’s Laws (cont.), Circuit Analysis   (PDF) S3 Notes (PDF) Problem S3 (PDF)

Solution S3 (PDF)

S4 The Node Method (PDF) (PDF) S4 Notes (PDF) Problem S4 (PDF)

Solution S4 (PDF)

S5 The Loop Method (PDF) (PDF) S5 Notes (PDF) Problem S5 (PDF)

Solution S5 (PDF)

S6 Thevenin and Norton Equivalent Networks (PDF) (PDF) S6 Notes ( PDF)

Node and Loop Method Supplement (PDF)

 
S7 Energy Storage Elements, Networks with Capacitors (PDF) (PDF) S7 Notes (PDF) Problem S7 (PDF)

Solution S7 (PDF)

S8 Time Response of RC Networks (PDF) (PDF) S8 Notes (PDF) Problem S8 (PDF)

Solution S8 (PDF)

S9 Circuits with Inductors and Capacitors (PDF) (PDF) S9 Notes (PDF) Problem S9 (PDF)

Solution S9 (PDF)

S10 Impedance Methods, The Concept of “State”, State Equations (PDF) (PDF) S10 Notes (PDF) Problem S10 (PDF)

Solution S10 (PDF)

S11 Homogenoeus State Equations (PDF) (PDF) S11 Notes (PDF)

Edwards, et al. Section 5.4.

Problem S11 (PDF)

Solution S11 (PDF)

S12 More on Finding State Equations, Eigenvalues and Eigenvectors (PDF) (PDF) S12 Notes (PDF) Problem S12 (PDF)

Solution S12 (PDF)

S13 Solving State Equations Using Eigenvalues and Eigenvectors (PDF) (PDF) S13 Notes (PDF) Problem S13 (PDF)

Solution S13 (PDF)

S14 State Equations for Circuits with Sources (PDF) (PDF) S14 Notes (PDF)
Transfer Function Supplement (PDF)
Problem S14 (PDF)

Solution S14 (PDF)

S15 Quiz Discussion        

16.03-16.04

LEC # TOPICS CONCEPT QUESTIONS MUDDY POINTS READINGS ASSIGNMENTS / SOLUTIONS
S1 Linear, Time-Invariant Systems, The Step Response (PDF) (PDF) S1 Notes (PDF)

Oppenheim, et al. Chapter 1.

Problem S1 (PDF)

Solution S1 (PDF)

S2 Duhamel’s Integral (PDF) (PDF) S2 Notes (PDF)

Oppenheim, et al. Section 2.0-2.2.

Problem S2 (PDF)

Solution S2 (PDF)

S3 Duhamel’s Integral (cont.) (PDF) (PDF) S3 Notes (PDF) Problem S3 (PDF)

Solution S3 (PDF)

S4 Impulse Response, Superposition Integral (PDF) (PDF) S4 Notes (PDF) Problem S4 (PDF)

Solution S4 (PDF)

S5 Convolution and LTI Systems (PDF) (PDF) S5 Notes (PDF) Problem S5 (PDF)

Solution S5 (PDF)

S6 Properties of the Impulse, Properties of Convolution (PDF) (PDF) S6 Notes (PDF) Problem S6 (PDF)

Solution S6 (PDF)

S7 Graphical Interpretation of Convolution (PDF) (PDF) S7 Notes (PDF) Problem S7 (PDF)

Solution S7 (PDF)

S8 Response to Exponential Inputs, The Unilateral Laplace Transform (PDF) (PDF) S8 Notes (PDF) Problem S8 (PDF)

Solution S8 (PDF)

S9 Selected Laplace Transforms (PDF) (PDF) S9 Notes (PDF) Problem S9 (PDF)

Solution S9 (PDF)

S10 Properties of the LT, Analysis of Systems Using LTs (PDF) (PDF) S10 Notes (PDF) Problem S10 (PDF)

Solution S10 (PDF)

S11 Partial Fraction Expansions   (PDF) S11 Notes ( PDF)

Phugoid Supplement (PDF)

Problem S11 (PDF)

Solution S11 (PDF)

S12 BIBO Stability and the Region of Convergence (PDF) (PDF) S12 Notes (PDF) Problem S12 (PDF)

Solution S12 (PDF)

S13 The Bilateral Laplace Transform (PDF) (PDF) S13 Notes (PDF) Problem S13 (PDF)

Solution S13 (PDF)

S14 Examples of the Bilateral LT, The Inverse Laplace Transform (PDF) (PDF) S14 Notes (PDF) Problem S14 (PDF)

Solution S14 (PDF)

S15 BIBO Stability and the Bilateral LT, The Fourier Transform (PDF) (PDF) S15 Notes ( PDF)

Oppenheim, et al. Chapter 4.

Problem S15 (PDF)

Solution S15 (PDF)

S16 The Fourier Transform (cont.), Fourier Transform Properties (PDF) (PDF) S16 Notes ( PDF)

Oppenheim, et al. Chapter 4.

Problem S16 (PDF)

Solution S16 (PDF)

S17 The Fourier Transform of Special Functions, Convolutions and the FT (PDF) (PDF) S17 Notes (PDF) Problem S17 (PDF)

Solution S17 (PDF)

S18 Modulation, AM-DSB/SC (PDF) (PDF) S18 Notes (PDF) Problem S18 (PDF)

Solution S18 (PDF)

S19 AM-DSB/WC, Envelope Detection (PDF) (PDF) S19 Notes (PDF) Problem S19 (PDF)
S20 Sampling (PDF) (PDF) S20 Notes (PDF) Problem S20 (PDF)
S21 Measuring the Size of Signals, Parseval’s Theorem (PDF) (PDF) S21 Notes (PDF) Problem S21 (PDF)

Solution S21 (PDF)

S22 The Duration-Bandwidth Relations (PDF) (PDF) S22 Notes (PDF) Problem S22 (PDF)

Solution S22 (PDF)

S23 The Duration-Bandwidth Relations (cont.), Loran-C Navigation (PDF)   S23 Notes (PDF)