What is the hybridization of the O atoms below?

1. The O atoms are not hybridized.
2. sp
3. sp²
4. sp³
What is the hybridization of the O atoms below?

1. The O atoms are not hybridized.
2. sp
3. sp²
4. sp³
If bonds are stronger in the products than in the reactants, ΔH is:

1. negative (exothermic rxn)
2. positive (exothermic rxn)
3. negative (endothermic rxn)
4. positive (endothermic rxn)
If bonds are stronger in the products than in the reactants, ΔH is:

1. negative (exothermic rxn) - 66% correct
2. positive (exothermic rxn) - 8%
3. negative (endothermic rxn) - 15%
4. positive (endothermic rxn) - 11%
Which answer has the correct number of significant figures?

1. - 4.48 kJ/mol
2. - 4.5 kJ/mol
3. - 4. kJ/mol
Which answer has the correct number of significant figures?

1. - 4.48 kJ/mol
2. - 4.5 kJ/mol
3. - 4. kJ/mol

[Bar chart showing 66% for answer 3, 27% for answer 2, and 7% for answer 1]
The oxidation of glucose
(ΔH° negative, ΔS° positive)

1. is spontaneous at all temperatures.
2. is non-spontaneous at all temperatures.
3. Can be spontaneous OR non-spontaneous depending on the temperature.

(Hint: $\Delta G = \Delta H - T\Delta S$)
The oxidation of glucose
(ΔH° negative, ΔS° positive)

1. is spontaneous at all temperatures.
2. is non-spontaneous at all temperatures.
3. Can be spontaneous OR non-spontaneous depending on the temperature.

(Hint: $\Delta G = \Delta H - T\Delta S$)
$$2\text{H}_2\text{O}_2(l) \rightarrow 2\text{H}_2\text{O}(l) + \text{O}_2(g)$$

ΔS° is predicted to be

1. negative
2. positive
3. zero
4. negative or positive depending on temperature
\[2\text{H}_2\text{O}_2(l) \rightarrow 2\text{H}_2\text{O}(l) + \text{O}_2(g) \]

\(\Delta S^\circ \) is predicted to be

1. negative
2. positive
3. zero
4. negative or positive depending on temperature
If $\Delta G_f^\circ < 0$, a compound is ____________ relative to its elements.

1. stable
2. unstable
If $\Delta G_f^\circ < 0$, a compound is ________ relative to its elements.

1. stable
2. unstable
5.111 Principles of Chemical Science
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.