Transposes, permutations, spaces \(\mathbb{R}^n \)

In this lecture we introduce vector spaces and their subspaces.

Permutations

Multiplication by a permutation matrix \(P \) swaps the rows of a matrix; when applying the method of elimination we use permutation matrices to move zeros out of pivot positions. Our factorization \(A = LU \) then becomes \(PA = LU \), where \(P \) is a permutation matrix which reorders any number of rows of \(A \). Recall that \(P^{-1} = P^\top \), i.e. that \(P^\top P = I \).

Transposes

When we take the transpose of a matrix, its rows become columns and its columns become rows. If we denote the entry in row \(i \) column \(j \) of matrix \(A \) by \(A_{ij} \), then we can describe \(A^\top \) by:

\[
\begin{bmatrix}
1 & 3 \\
2 & 3 \\
4 & 1
\end{bmatrix}^\top =
\begin{bmatrix}
1 & 2 & 3 & 4 \\
3 & 1
\end{bmatrix}.
\]

A matrix \(A \) is symmetric if \(A^\top = A \). Given any matrix \(R \) (not necessarily square) the product \(R^\top R \) is always symmetric, because \((R^\top R)^\top = R^\top (R^\top)^\top = R^\top R \). (Note that \((R^\top)^\top = R \).)

Vector spaces

We can add vectors and multiply them by numbers, which means we can discuss linear combinations of vectors. These combinations follow the rules of a vector space.

One such vector space is \(\mathbb{R}^2 \), the set of all vectors with exactly two real number components. We depict the vector \(\begin{bmatrix} a \\ b \end{bmatrix} \) by drawing an arrow from the origin to the point \((a, b) \) which is \(a \) units to the right of the origin and \(b \) units above it, and we call \(\mathbb{R}^2 \) the “\(x-y \) plane”.

Another example of a space is \(\mathbb{R}^n \), the set of (column) vectors with \(n \) real number components.

Closure

The collection of vectors with exactly two positive real valued components is not a vector space. The sum of any two vectors in that collection is again in the collection, but multiplying any vector by, say, \(-5 \), gives a vector that’s not
in the collection. We say that this collection of positive vectors is closed under addition but not under multiplication.

If a collection of vectors is closed under linear combinations (i.e. under addition and multiplication by any real numbers), and if multiplication and addition behave in a reasonable way, then we call that collection a vector space.

Subspaces

A vector space that is contained inside of another vector space is called a subspace of that space. For example, take any non-zero vector \(v \) in \(\mathbb{R}^2 \). Then the set of all vectors \(cv \), where \(c \) is a real number, forms a subspace of \(\mathbb{R}^2 \). This collection of vectors describes a line through \(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \) in \(\mathbb{R}^2 \) and is closed under addition.

A line in \(\mathbb{R}^2 \) that does not pass through the origin is not a subspace of \(\mathbb{R}^2 \). Multiplying any vector on that line by 0 gives the zero vector, which does not lie on the line. Every subspace must contain the zero vector because vector spaces are closed under multiplication.

The subspaces of \(\mathbb{R}^2 \) are:

1. all of \(\mathbb{R}^2 \),
2. any line through \(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \) and
3. the zero vector alone (Z).

The subspaces of \(\mathbb{R}^3 \) are:

1. all of \(\mathbb{R}^3 \),
2. any plane through the origin,
3. any line through the origin, and
4. the zero vector alone (Z).

Column space

Given a matrix \(A \) with columns in \(\mathbb{R}^3 \), these columns and all their linear combinations form a subspace of \(\mathbb{R}^3 \). This is the column space \(C(A) \). If \(A = \begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 4 & 1 \end{bmatrix} \),

the column space of \(A \) is the plane through the origin in \(\mathbb{R}^3 \) containing \(\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \)

and \(\begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} \).

Our next task will be to understand the equation \(Ax = b \) in terms of subspaces and the column space of \(A \).
MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.