- Origamizer folding exercise

Tips:
- Rhino’s Face3D + Join + Weld (180) FTW
- export OBJ as Polygon Mesh
- turn on Angle Condition

- Convex vs. nonconvex vertices

\[3 \cdot 60^\circ = 180^\circ \]
\[6 \cdot 90^\circ = 540^\circ \]
\[\sum \Theta_i \leq 360^\circ \]
\[\sum \Theta_i > 360^\circ \]

- DEMO of \(\Delta \) in Origamizer

- Freeform Origami DEMO
• Geometric constraints:
 - Rigid Origami Simulator
 (parameterized by fold angle)
 - closure around a vertex
 - Freeform Origami
 (parameterized by 3D vertex coordinates)
 - developability
 - flat foldability
 - Origamizer
 - w/ variable setup
 - closure around a vertex
 - convexity of paper boundary
 - convexity of edge-tucking molecule
 - tuck angle condition
 - tuck depth condition

• Solve these nonlinear constraints
 via sequence of linear systems ∇
 to reduce error
 1. Euler step to make infinitesimal motion
 satisfy constraints
 2. Newton step to correct 2nd order error
NP-completeness: what, me worry?
 - local foldability seems to be enough for small rigid motions
 - OPEN: theorem?
 - amount of valid motion varies

Automatic folding:
 - simple folding robot [Balkcom & Mason 2008]
 - Printed Circuit MicroElectricalMechanical System (PC-MEMS)
 [Harvard Microrobotics Lab 2011]

Open problems in rigid origami?
 - OPEN: complexity of deciding rigid foldability of a crease pattern?
 - degree-4 vertices ⇒ easy
 [Demaine & Tachi 2012]
 - OPEN: design rigidly foldable origami (any interesting class)
 - paper shopping bags
 - OPEN: unfold from flat state with extra creases

PROJECT: port Tachi’s software to MacOS

Multiple origami from subsets of 1 CP?
 ⇒ LECTURE 7!