Box pleating history
- Mooser’s train [Raymond McLaughlin, 1967]
- Black Forest Cuckoo Clock [Lang 1987]

OPEN: universal folding of e.g.,
polytetrahedra or polyoctahedra
from triangular grid?

Maze folding examples
- our print designs
Meaning of NP-hardness:
- doesn’t mean anything about specific instances
- about scaling of running time as problem size n grows

 e.g. 8×8 Chess is “trivial”
 $n \times n$ Chess is EXP-hard
 \Rightarrow running time scales exponentially

Simple fold hardness review:
- convert Partition instance (a_1, a_2, \ldots, a_n)
 into equivalent simple-fold instance
 (polygon + creases)

 \Leftrightarrow solution for Partition exists
 \Leftrightarrow solution for simple folds exists

(\Leftarrow) vertical creases will bind otherwise

(\Rightarrow) fold creases between a_i & a_{i+1}
 when in different halves
 fold both vertical creases
 fold rest
Flat foldability hardness review:
- convert NAE triples into crease pattern

(⇐) gadgets force NAE constraints
read T/F assignment off Ψ/Ψ assignment

(⇒) verify gadgets do fold as needed
patch together (glue) foldings together

OPEN: simpler proof? [Tom Hull]

NP-hardness even given Ψ/Ψ assignment:
[Bern & Hayes 1996]
Map folding: (nonsimple folds, unlike L_2)
- horizontal & vertical creases in rectangular paper
- given X/Y assignment, does it fold flat?
- **OPEN:** polynomial? NP-hard?
 [posed by Edmonds 1997]

$2 \times n$ has polynomial-time algorithm
[Demaine, Liu, Morgan 2012]
(from 6.849 project in 2010)
- NEWS labeling: for each vertex, mark which emanating crease is different
- top edge view: top of folded map
 - N & S sides of unfolded map
 - nested pairings from map spine
 - $N =$ left turn \Rightarrow $E =$ "in"
 - $S =$ right turn \Rightarrow $W =$ "out"
- ray diagram: [Charlton & Zhou, 6.849, 2007]
 - follow map spine (merging N & S sides)
 - y coord. = “nesting depth” i.e coord. flexible
 - E = down turn \downarrow \downarrow
 - W = up turn \uparrow \uparrow
 - N & S shoot downward rays \downarrow \downarrow

- rules: (equivalent to flat folding)
 - spine doesn’t self-intersect
 - N rays must hit N rays or go to ∞
 - S rays ditto
 - constrained spine segment (with no view to infinity below it)
 have equal number of N & S vertices below it

- spaces between spine in ray diagram forms a tree structure
- “guess” this tree structure (effectively trying them all) using dynamic programming