Fold & cut software [David Benjamin & Anthony Lee 2010]
 - DEMO (6.849 project)
 - PROJECT: improve UI, make Java applet; port to JavaScript; force degeneracies; or compute folded state & build/unfold
 - JOrigami: disks [Silveira, Cosentino, Coelho, Aoki]

Odd-degree vertices?
- even degree \iff face 2-colorable
 \iff alternating above/below side assignment
 \iff uncreased cut edges
 \iff scissor cuts (separate material on both sides of line)
- mathematical/laser cuts (removing line) can do odd-degree vertices
 e.g.

- if graph doesn’t disconnect from the removal of any 1 edge (planar 2-edge-connected) then = union of two even graphs
 [Demaine, Demaine, Lubiw 1998, thanks to Jim Geelen & Dan Younger]
- Linear corridors \rightarrow tree
 - corridor \rightarrow edge (or ray) [flap]
 - width w \rightarrow length w
 - perpendicular \rightarrow vertex [hinge]
 (connected comps)
 - similar to TreeMaker CP \rightarrow shadow tree

- Tree folding \rightarrow origami folding
 - expand each edge to accordion folding
 - stitch together at perpendiculars

- Irrational ratio happens with prob. 1? YES
 - but first need closed loop of perpendiculars
 - CONJECTURE: with prob. 1, only get loops around one cut vertex
 (normal circular corridor)

- e.g.

- Examples: students & HELL

- Disk packing \rightarrow tri/quad decomposition
 - disk center \rightarrow vertex
 - kissing disks \rightarrow edge
 - 3- or 4-gap \rightarrow triangle or quad.
0 How many disks? $\mathcal{O}\left(\sum_{x \in \mathcal{P}} \frac{dx}{lfs(x)}\right)$
- $lfs(x) = \frac{\text{local feature size}}{\text{radius of smallest disk centered at } x}$
 hitting a nonincident edge of \mathcal{P}

0 Disk packing method vs. tree method
- disks
- easy to place (but many)
- input = polygon
- regions = tri. & quad.
- both align boundaries of universal molecules
- disks & rivers
- hard to place
- input = tree
- regions = convex (or tri.)

0 Straight skeleton method vs. tree method
- arbitrary polygons/graphs
- no control on tree/lengths
- $\text{POLYGON PACKING} \approx \text{combination of two}$
 (straight skeleton + gussets to control)
 [Demaine, Demaine, Lang] [Origami Design Secrets 2e]

0 OPEN: fold flat & cut of fixed curvature k
- make all unions of arcs of this curvature?
 $- \text{intuition: } \frac{1}{k}$
 $\text{arc} \rightarrow \text{fold & cut}$
- but:
- Flattening
 - 3D fold & cut \Rightarrow flat folded state (folding motions not preserved)
 - **NEW**: convex polyhedra can be continuously flattened [Itoh, Nara, Vilcu 2011]
 - **PROJECT**: animate their motion
 - **OPEN**: nonconvex polyhedra?

PROJECT: fold & cut alphabet
e.g. 3 or 4 simple folds/letter or CP for entire word/page

PROJECT: paper cutting art via fold & cut (à la Peter Callesen)
6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.