Pebble algorithm: [Jacobs & Hendrickson 1997]

1. test 2k property: every k vertices induce ≤2k edges
 - each vertex has 2 attached pebbles
 - each pebble can cover 1 incident edge
 - free if not used to cover
 - goal: cover every edge

Claim: 2k property \iff pebble cover

Proof:

(\iff) edges induced by k vertices must be covered by 2k pebbles of those vertices
\implies ≤2k induced edges

(\Rightarrow) by correctness of algorithm below:
 - no pebble cover
 - algorithm below will fail
 - find vertex set violating 2k property \square
Algorithm:
- add edges one at a time
- view covered edge as directed from pebble
- for each added edge \(vw \):
 - search for directed path from \(v \) or \(w \) to free pebble
 - if found: shift pebbles (reverse edge)
- else: nodes reachable from \(v \) & \(w \) violate 2k property

Proof: no outgoing edges
\Rightarrow pebbles cover induced edges except \(vw \)
\Rightarrow > 2k edges among \(k \) vertices

Running time: \(O(V + E) \) per search
 * \(O(V) \) searches
 = \(O(V^3 + VE) \)

\(\Leftrightarrow \) just check whether \(E > 2V \) at start
(\(\Rightarrow \) return NO)
Claim: G has $2k-3$ property

$\iff G+3e$ has $2k$ property

add 3 copies of e for every edge e in G

Proof: consider k vertices,

(\Rightarrow) $\leq 2k-3$ induced edges

if e among them:

$G+3e$ induces $\leq 2k$ edges

else: still $\leq 2k-3 < 2k$ edges

(\Leftarrow) if no induced edges: done

else: add 3 copies of induced edge results in $\leq 2k$ induced edges

remove 3 extra copies

$\Rightarrow \leq 2k-3$ induced edges \square

$O(V^3)$ algorithm: call previous on $G+3e\forall e$

$O(V^2)$ algorithm: incremental as above

- for each added edge e:

 - add 4 copies of e as above

 - if succeed: remove 3 copies of e
 (freeing 3 pebbles)

 - if fail: remove all 4 copies of e
 mark edge as redundant

 - gen. rigid $\iff 2n-3$ nonredundant edges
Implementation [Audrey Lee]

Generalization to a \(k-b \) property
[Lee & Streinu - Discr. Math. 2008]

Rigid component decomposition:
[above paper + Lee, Streinu, Theran - CCCG 2005]
roughly, component = what you can reach, including backward edges if reachable
component on other side has no free pebbles

Body & bar frameworks:
- generically rigid in \(d \)-D
\[\iff \text{graph has } a_k-a \text{ property} \]
where \(a = \frac{d(d+1)}{2} = 6 \) in 3D

[Tay 1984 + Nash-Williams/Tutte (indep.)]
- can also support hinges (3D):
 equivalent to 5 bars

Angular rigidity: [Lee-St. John & Streinu - CCCG 2009]
- lines/planes & angles: angles min. gen. rigid
 \[\iff \text{constraint graph is Laman in } 3D \]
- bodies & angles: angles gen. rigid in 3D
 \[\iff \text{constraint graph has } 3k-3 \text{ property} \]
5-connected double bananas: [Mantler & Snoeyink - 2004]

- in fact, any graph can be made 5-connected while preserving Laman & generic flexibility
 - just add spiders: