Hinged dissection software: just specific examples

PROJECT: hinged dissection animator
- implement slender adornments (refinement + expansive motion)
- implement general algorithm?
- implement polyform algorithm

PROJECT: design elegant hinged dissections

Polyform = n copies of one shape glued together along corresp. edges

Inductive construction:
- **base case:** hinge-dissect 1 copy such that every edge has incident hinge
- **step:** take spanning tree of copies remove leaf copy induct on n-1 remaining copies rotate base case to meet them reconnect ~ get same hinging

⇒ folded states (use slender for motion)

Also: polyΔ → poly□, etc.
3D [Demaine, Demaine, Lindy, Souvaine 2005]

Physical:
- in liquid
- DNA
- Macrobot/Decibot
- related: reconfigurable robots

- Rectangle \rightarrow rectangle [Montucla 1778]
 - superposing strips method

- same method for Dudeney's $\Delta \rightarrow \Box$
- more stable table [Frederickson 2008]

PROJECT: build reconfigurable furniture

- \# pieces doubles? at least, in worst case
Pseudopolynomial: say integer

if polygon vertices lie on common grid,
pieces = poly(n, r)
→ # grid positions = \frac{\text{size}}{\text{cell size}}

- idea: ensure constant-depth recursion
 ① triangulate polygons with grid vertices
 ⇒ matching Δ areas of 1/2 [Pick's Theorem]
 ② chainify \(\triangle \) \(\Rightarrow \) \(\triangledown \)
 ⇒ vertices on \(\frac{1}{3} \) grid
 ③ fix which vertices connect which Δs
 by only modifying parent in subtree move
 ④ Δ \(\Rightarrow \) Δ by overlaying 3 constructions:
 A
 B
 C
 \leftarrow \text{actually done last}

... using pseudocuts
 \Rightarrow \text{simulate cut overlays}
3D dissection:
- volumes must match
- insufficient by Dehn's solution [1901]
to Hilbert's Third Problem [1900]
- Dehn invariants must match:
 \[\sum_{\text{edge } e} l(e) \otimes \left[\Theta(e) + \mathbb{Q} \cdot \pi \right] \]
 ignore added rational multiples of \(\pi \Rightarrow \text{"irrational part"} \)
- tensor product space: linear combination of pairs \(l \otimes \Theta \) where
 \[l_1 \otimes \Theta + l_2 \otimes \Theta = (l_1 + l_2) \otimes \Theta \]
 \[l \otimes \Theta_1 + l \otimes \Theta_2 = l \otimes (\Theta_1 + \Theta_2) \]
 \[c (l \otimes \Theta) = (cl) \otimes \Theta = l \otimes (c \Theta) \quad \forall c \in \mathbb{Q} \]
- Dehn's Theorem: invariant under dissection
 - e.g.: cut edge \((l_1 + l_2) \otimes \Theta \rightarrow l_1 \otimes \Theta + l_2 \otimes \Theta \)
 - slice angle \(l \otimes (\Theta_1 + \Theta_2) \rightarrow l \otimes \Theta_1 + l \otimes \Theta_2 \)
 \(\Rightarrow \) no dissection of cube \(\rightarrow \) regular tetrahedron

\[12 (1 \otimes 90^\circ) = \emptyset \]
\[6 (2.04\ldots \otimes 70.5288\ldots) \]
\[\arccos \left(\frac{1}{3} \right) \]
- 3D dissection exists ⇔ volumes & Dehn Invariants match [Sydler 1965]
 - ditto in 4D [Jessen 1968]

OPEN: 5D & higher?

OPEN: efficient algorithm to check Dehn match
 - decidable [Kreinovich-Geomb, 2008]

OPEN: algorithm to find dissection
 - refinement into hinged dissection still works [Abel et al.]